Nuprl Lemma : squash_squash

[a:ℙ]. uiff(↓↓a;↓a)


Proof




Definitions occuring in Statement :  uiff: uiff(P;Q) uall: [x:A]. B[x] prop: squash: T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a squash: T prop:
Lemmas referenced :  squash_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalHypSubstitution imageElimination hypothesis sqequalRule imageMemberEquality hypothesisEquality thin baseClosed lemma_by_obid isectElimination productElimination independent_pairEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[a:\mBbbP{}].  uiff(\mdownarrow{}\mdownarrow{}a;\mdownarrow{}a)



Date html generated: 2016_05_13-PM-03_13_31
Last ObjectModification: 2016_01_06-PM-05_49_29

Theory : core_2


Home Index