Nuprl Lemma : squash_true
uiff(↓True;True)
Proof
Definitions occuring in Statement : 
uiff: uiff(P;Q)
, 
squash: ↓T
, 
true: True
Definitions unfolded in proof : 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
true: True
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
squash: ↓T
Lemmas referenced : 
true_wf, 
squash_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
cut, 
natural_numberEquality, 
sqequalRule, 
sqequalHypSubstitution, 
axiomEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
lemma_by_obid, 
isectElimination, 
thin, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
imageElimination
Latex:
uiff(\mdownarrow{}True;True)
Date html generated:
2016_05_13-PM-03_13_34
Last ObjectModification:
2016_01_06-PM-05_49_17
Theory : core_2
Home
Index