Nuprl Lemma : squash_true
uiff(↓True;True)
Proof
Definitions occuring in Statement :
uiff: uiff(P;Q)
,
squash: ↓T
,
true: True
Definitions unfolded in proof :
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
member: t ∈ T
,
true: True
,
prop: ℙ
,
uall: ∀[x:A]. B[x]
,
squash: ↓T
Lemmas referenced :
true_wf,
squash_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
independent_pairFormation,
isect_memberFormation,
introduction,
cut,
natural_numberEquality,
sqequalRule,
sqequalHypSubstitution,
axiomEquality,
equalityTransitivity,
hypothesis,
equalitySymmetry,
lemma_by_obid,
isectElimination,
thin,
imageMemberEquality,
hypothesisEquality,
baseClosed,
imageElimination
Latex:
uiff(\mdownarrow{}True;True)
Date html generated:
2016_05_13-PM-03_13_34
Last ObjectModification:
2016_01_06-PM-05_49_17
Theory : core_2
Home
Index