Nuprl Lemma : squash_true

uiff(↓True;True)


Proof




Definitions occuring in Statement :  uiff: uiff(P;Q) squash: T true: True
Definitions unfolded in proof :  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T true: True prop: uall: [x:A]. B[x] squash: T
Lemmas referenced :  true_wf squash_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation isect_memberFormation introduction cut natural_numberEquality sqequalRule sqequalHypSubstitution axiomEquality equalityTransitivity hypothesis equalitySymmetry lemma_by_obid isectElimination thin imageMemberEquality hypothesisEquality baseClosed imageElimination

Latex:
uiff(\mdownarrow{}True;True)



Date html generated: 2016_05_13-PM-03_13_34
Last ObjectModification: 2016_01_06-PM-05_49_17

Theory : core_2


Home Index