Nuprl Lemma : uimplies-iff-squash-implies

[P,Q:ℙ].  (Q supposing ⇐⇒ (↓P)  Q)


Proof




Definitions occuring in Statement :  uimplies: supposing a uall: [x:A]. B[x] prop: iff: ⇐⇒ Q squash: T implies:  Q
Definitions unfolded in proof :  squash: T uimplies: supposing a uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q
Lemmas referenced :  isect_wf image-type_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation independent_pairFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality baseClosed hypothesis lambdaEquality functionEquality universeEquality imageElimination rename introduction equalityTransitivity equalitySymmetry independent_functionElimination imageMemberEquality

Latex:
\mforall{}[P,Q:\mBbbP{}].    (Q  supposing  P  \mLeftarrow{}{}\mRightarrow{}  (\mdownarrow{}P)  {}\mRightarrow{}  Q)



Date html generated: 2016_05_13-PM-03_07_33
Last ObjectModification: 2016_01_06-PM-05_28_21

Theory : core_2


Home Index