Nuprl Lemma : uimplies_antisymmetry
∀[P,Q:ℙ].  (Q supposing P 
⇒ P supposing Q 
⇒ uiff(P;Q))
Proof
Definitions occuring in Statement : 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
isect_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
hypothesis, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
hypothesisEquality, 
lambdaEquality, 
universeEquality
Latex:
\mforall{}[P,Q:\mBbbP{}].    (Q  supposing  P  {}\mRightarrow{}  P  supposing  Q  {}\mRightarrow{}  uiff(P;Q))
Date html generated:
2016_05_13-PM-03_07_45
Last ObjectModification:
2016_01_06-PM-05_28_09
Theory : core_2
Home
Index