Nuprl Lemma : uimplies_antisymmetry

[P,Q:ℙ].  (Q supposing  supposing  uiff(P;Q))


Proof




Definitions occuring in Statement :  uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] prop: implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q uiff: uiff(P;Q) and: P ∧ Q member: t ∈ T prop: uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  isect_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation hypothesis cut lemma_by_obid sqequalHypSubstitution isectElimination thin sqequalRule hypothesisEquality lambdaEquality universeEquality

Latex:
\mforall{}[P,Q:\mBbbP{}].    (Q  supposing  P  {}\mRightarrow{}  P  supposing  Q  {}\mRightarrow{}  uiff(P;Q))



Date html generated: 2016_05_13-PM-03_07_45
Last ObjectModification: 2016_01_06-PM-05_28_09

Theory : core_2


Home Index