Nuprl Lemma : xmiddle_wf
XM ∈ ℙ'
Proof
Definitions occuring in Statement : 
xmiddle: XM
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
xmiddle: XM
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
decidable_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
universeEquality, 
Error :lambdaEquality_alt, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
cumulativity, 
Error :inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
Error :universeIsType
Latex:
XM  \mmember{}  \mBbbP{}'
Date html generated:
2019_06_20-AM-11_15_40
Last ObjectModification:
2018_09_27-PM-05_36_19
Theory : core_2
Home
Index