Nuprl Lemma : name_eq-is-inl

[x,y,z:Base].  supposing name_eq(x;y) inl z


Proof




Definitions occuring in Statement :  name_eq: name_eq(x;y) uimplies: supposing a uall: [x:A]. B[x] inl: inl x base: Base sqequal: t
Definitions unfolded in proof :  name_eq: name_eq(x;y) sq-decider: sq-decider(eq) uall: [x:A]. B[x] member: t ∈ T implies:  Q exists: x:A. B[x] uimplies: supposing a
Lemmas referenced :  sq-decider-name-deq base_sq base_wf
Rules used in proof :  sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid hypothesis isectElimination thin hypothesisEquality independent_functionElimination dependent_pairFormation sqequalIntensionalEquality because_Cache isect_memberFormation introduction sqequalAxiom sqequalRule isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[x,y,z:Base].    x  \msim{}  y  supposing  name\_eq(x;y)  \msim{}  inl  z



Date html generated: 2016_05_14-PM-03_34_20
Last ObjectModification: 2015_12_26-PM-06_00_26

Theory : decidable!equality


Home Index