Nuprl Lemma : name_eq-is-inl
∀[x,y,z:Base].  x ~ y supposing name_eq(x;y) ~ inl z
Proof
Definitions occuring in Statement : 
name_eq: name_eq(x;y)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
inl: inl x
, 
base: Base
, 
sqequal: s ~ t
Definitions unfolded in proof : 
name_eq: name_eq(x;y)
, 
sq-decider: sq-decider(eq)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
uimplies: b supposing a
Lemmas referenced : 
sq-decider-name-deq, 
base_sq, 
base_wf
Rules used in proof : 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
hypothesis, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
dependent_pairFormation, 
sqequalIntensionalEquality, 
because_Cache, 
isect_memberFormation, 
introduction, 
sqequalAxiom, 
sqequalRule, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[x,y,z:Base].    x  \msim{}  y  supposing  name\_eq(x;y)  \msim{}  inl  z
Date html generated:
2016_05_14-PM-03_34_20
Last ObjectModification:
2015_12_26-PM-06_00_26
Theory : decidable!equality
Home
Index