Nuprl Lemma : name_eq-normalize
∀[F,G,a,b:Top].  (if name_eq(a;b) then F a else G fi  ~ if name_eq(a;b) then F b else G fi )
Proof
Definitions occuring in Statement : 
name_eq: name_eq(x;y)
, 
ifthenelse: if b then t else f fi 
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
apply: f a
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
uimplies: b supposing a
, 
sq-decider: sq-decider(eq)
, 
name-deq: NameDeq
, 
list-deq: list-deq(eq)
, 
list_ind: list_ind, 
name_eq: name_eq(x;y)
Lemmas referenced : 
top_wf, 
ifthenelse_sqequal, 
sq-decider-name-deq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
hypothesis, 
axiomSqEquality, 
Error :inhabitedIsType, 
hypothesisEquality, 
Error :isect_memberEquality_alt, 
isectElimination, 
Error :isectIsTypeImplies, 
Error :universeIsType, 
extract_by_obid, 
baseApply, 
closedConclusion, 
baseClosed, 
independent_pairFormation, 
Error :lambdaFormation_alt, 
Error :productIsType, 
sqequalIntensionalEquality, 
independent_isectElimination, 
independent_functionElimination
Latex:
\mforall{}[F,G,a,b:Top].    (if  name\_eq(a;b)  then  F  a  else  G  fi    \msim{}  if  name\_eq(a;b)  then  F  b  else  G  fi  )
Date html generated:
2019_06_20-PM-01_58_06
Last ObjectModification:
2018_10_15-PM-02_19_57
Theory : decidable!equality
Home
Index