Nuprl Lemma : name_eq-normalize

[F,G,a,b:Top].  (if name_eq(a;b) then else fi  if name_eq(a;b) then else fi )


Proof




Definitions occuring in Statement :  name_eq: name_eq(x;y) ifthenelse: if then else fi  uall: [x:A]. B[x] top: Top apply: a sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q implies:  Q exists: x:A. B[x] uimplies: supposing a sq-decider: sq-decider(eq) name-deq: NameDeq list-deq: list-deq(eq) list_ind: list_ind name_eq: name_eq(x;y)
Lemmas referenced :  top_wf ifthenelse_sqequal sq-decider-name-deq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule thin sqequalHypSubstitution hypothesis axiomSqEquality Error :inhabitedIsType,  hypothesisEquality Error :isect_memberEquality_alt,  isectElimination Error :isectIsTypeImplies,  Error :universeIsType,  extract_by_obid baseApply closedConclusion baseClosed independent_pairFormation Error :lambdaFormation_alt,  Error :productIsType,  sqequalIntensionalEquality independent_isectElimination independent_functionElimination

Latex:
\mforall{}[F,G,a,b:Top].    (if  name\_eq(a;b)  then  F  a  else  G  fi    \msim{}  if  name\_eq(a;b)  then  F  b  else  G  fi  )



Date html generated: 2019_06_20-PM-01_58_06
Last ObjectModification: 2018_10_15-PM-02_19_57

Theory : decidable!equality


Home Index