Nuprl Lemma : ifthenelse_sqequal
∀[a,x1,y1,x2,y2:Base].
  if a then x1 else y1 fi  ~ if a then x2 else y2 fi  
  supposing ((∃z:Base. (a ~ inl z)) 
⇒ (x1 ~ x2)) ∧ ((∃z:Base. (a ~ inr z )) 
⇒ (y1 ~ y2))
Proof
Definitions occuring in Statement : 
ifthenelse: if b then t else f fi 
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
inr: inr x 
, 
inl: inl x
, 
base: Base
, 
sqequal: s ~ t
Definitions unfolded in proof : 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
and_wf, 
base_wf, 
exists_wf, 
ifthenelse_sqle
Rules used in proof : 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
productElimination, 
thin, 
sqequalSqle, 
cut, 
lemma_by_obid, 
isectElimination, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
independent_functionElimination, 
hypothesis, 
sqleReflexivity, 
lambdaEquality, 
sqequalIntensionalEquality, 
because_Cache, 
functionEquality, 
isect_memberFormation, 
introduction, 
sqequalAxiom, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[a,x1,y1,x2,y2:Base].
    if  a  then  x1  else  y1  fi    \msim{}  if  a  then  x2  else  y2  fi   
    supposing  ((\mexists{}z:Base.  (a  \msim{}  inl  z))  {}\mRightarrow{}  (x1  \msim{}  x2))  \mwedge{}  ((\mexists{}z:Base.  (a  \msim{}  inr  z  ))  {}\mRightarrow{}  (y1  \msim{}  y2))
Date html generated:
2016_05_13-PM-03_45_20
Last ObjectModification:
2016_01_14-PM-07_06_33
Theory : computation
Home
Index