Nuprl Lemma : ifthenelse_sqequal

[a,x1,y1,x2,y2:Base].
  if then x1 else y1 fi  if then x2 else y2 fi  
  supposing ((∃z:Base. (a inl z))  (x1 x2)) ∧ ((∃z:Base. (a inr ))  (y1 y2))


Proof




Definitions occuring in Statement :  ifthenelse: if then else fi  uimplies: supposing a uall: [x:A]. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q inr: inr  inl: inl x base: Base sqequal: t
Definitions unfolded in proof :  and: P ∧ Q uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  and_wf base_wf exists_wf ifthenelse_sqle
Rules used in proof :  sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity productElimination thin sqequalSqle cut lemma_by_obid isectElimination sqequalRule baseApply closedConclusion baseClosed hypothesisEquality independent_isectElimination independent_pairFormation lambdaFormation independent_functionElimination hypothesis sqleReflexivity lambdaEquality sqequalIntensionalEquality because_Cache functionEquality isect_memberFormation introduction sqequalAxiom isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[a,x1,y1,x2,y2:Base].
    if  a  then  x1  else  y1  fi    \msim{}  if  a  then  x2  else  y2  fi   
    supposing  ((\mexists{}z:Base.  (a  \msim{}  inl  z))  {}\mRightarrow{}  (x1  \msim{}  x2))  \mwedge{}  ((\mexists{}z:Base.  (a  \msim{}  inr  z  ))  {}\mRightarrow{}  (y1  \msim{}  y2))



Date html generated: 2016_05_13-PM-03_45_20
Last ObjectModification: 2016_01_14-PM-07_06_33

Theory : computation


Home Index