Step * 1 1 of Lemma count-by-decidable-equiv


1. [A] Type
2. [E] A ⟶ A ⟶ ℙ
3. EquivRel(A;x,y.E[x;y])
4. ∀x,y:A.  Dec(E[x;y])
5. : ℕ
6. ~ ℕk
7. List
8. (∀a,b∈L.  ¬E[a;b])
9. ∀a:A. (∃b∈L. E[a;b])
10. ||L|| ≤ k
11. (∀a,b∈L.  ¬E[a;b])
12. ∀a:A. (∃b∈L. E[a;b])
13. ∀i:ℕ||L||. ∃n:ℕ{a:A| E[a;L[i]]}  ~ ℕn
⊢ ∃f:ℕ||L|| ⟶ ℕ((∀i:ℕ||L||. {a:A| E[a;L[i]]}  ~ ℕi) ∧ i:ℕ||L|| × ℕi ∧ (k = Σ(f i < ||L||) ∈ ℤ))
BY
((Skolemize(-1) `f' THENA Auto) THEN With ⌜f⌝ (D 0)⋅ THEN Auto)⋅ }

1
1. [A] Type
2. [E] A ⟶ A ⟶ ℙ
3. EquivRel(A;x,y.E[x;y])
4. ∀x,y:A.  Dec(E[x;y])
5. : ℕ
6. ~ ℕk
7. List
8. (∀a,b∈L.  ¬E[a;b])
9. ∀a:A. (∃b∈L. E[a;b])
10. ||L|| ≤ k
11. (∀a,b∈L.  ¬E[a;b])
12. ∀a:A. (∃b∈L. E[a;b])
13. ∀i:ℕ||L||. ∃n:ℕ{a:A| E[a;L[i]]}  ~ ℕn
14. i:ℕ||L|| ⟶ ℕ
15. ∀i:ℕ||L||. {a:A| E[a;L[i]]}  ~ ℕi
16. ∀i:ℕ||L||. {a:A| E[a;L[i]]}  ~ ℕi
⊢ i:ℕ||L|| × ℕi

2
1. Type
2. A ⟶ A ⟶ ℙ
3. EquivRel(A;x,y.E[x;y])
4. ∀x,y:A.  Dec(E[x;y])
5. : ℕ
6. ~ ℕk
7. List
8. (∀a,b∈L.  ¬E[a;b])
9. ∀a:A. (∃b∈L. E[a;b])
10. ||L|| ≤ k
11. (∀a,b∈L.  ¬E[a;b])
12. ∀a:A. (∃b∈L. E[a;b])
13. ∀i:ℕ||L||. ∃n:ℕ{a:A| E[a;L[i]]}  ~ ℕn
14. i:ℕ||L|| ⟶ ℕ
15. ∀i:ℕ||L||. {a:A| E[a;L[i]]}  ~ ℕi
16. ∀i:ℕ||L||. {a:A| E[a;L[i]]}  ~ ℕi
17. i:ℕ||L|| × ℕi
⊢ = Σ(f i < ||L||) ∈ ℤ


Latex:


Latex:

1.  [A]  :  Type
2.  [E]  :  A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}
3.  EquivRel(A;x,y.E[x;y])
4.  \mforall{}x,y:A.    Dec(E[x;y])
5.  k  :  \mBbbN{}
6.  A  \msim{}  \mBbbN{}k
7.  L  :  A  List
8.  (\mforall{}a,b\mmember{}L.    \mneg{}E[a;b])
9.  \mforall{}a:A.  (\mexists{}b\mmember{}L.  E[a;b])
10.  ||L||  \mleq{}  k
11.  (\mforall{}a,b\mmember{}L.    \mneg{}E[a;b])
12.  \mforall{}a:A.  (\mexists{}b\mmember{}L.  E[a;b])
13.  \mforall{}i:\mBbbN{}||L||.  \mexists{}n:\mBbbN{}.  \{a:A|  E[a;L[i]]\}    \msim{}  \mBbbN{}n
\mvdash{}  \mexists{}f:\mBbbN{}||L||  {}\mrightarrow{}  \mBbbN{}.  ((\mforall{}i:\mBbbN{}||L||.  \{a:A|  E[a;L[i]]\}    \msim{}  \mBbbN{}f  i)  \mwedge{}  A  \msim{}  i:\mBbbN{}||L||  \mtimes{}  \mBbbN{}f  i  \mwedge{}  (k  =  \mSigma{}(f  i  |  i  <  ||\000CL||)))


By


Latex:
((Skolemize(-1)  `f'  THENA  Auto)  THEN  With  \mkleeneopen{}f\mkleeneclose{}  (D  0)\mcdot{}  THEN  Auto)\mcdot{}




Home Index