Nuprl Lemma : count-by-decidable-equiv

[A:Type]. ∀[E:A ⟶ A ⟶ ℙ].
  (EquivRel(A;x,y.E[x;y])
   (∀x,y:A.  Dec(E[x;y]))
   (∀k:ℕ
        (A ~ ℕk
         (∃L:A List
             ((∀a,b∈L.  ¬E[a;b])
             ∧ (∀a:A. (∃b∈L. E[a;b]))
             ∧ (∃f:ℕ||L|| ⟶ ℕ((∀i:ℕ||L||. {a:A| E[a;L[i]]}  ~ ℕi) ∧ i:ℕ||L|| × ℕi ∧ (k = Σ(f i < ||L||) ∈\000C ℤ))))))))


Proof




Definitions occuring in Statement :  equipollent: B pairwise: (∀x,y∈L.  P[x; y]) sum: Σ(f[x] x < k) l_exists: (∃x∈L. P[x]) select: L[n] length: ||as|| list: List equiv_rel: EquivRel(T;x,y.E[x; y]) int_seg: {i..j-} nat: decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] product: x:A × B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T exists: x:A. B[x] and: P ∧ Q cand: c∧ B prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} uimplies: supposing a guard: {T} nat: ge: i ≥  lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top less_than: a < b squash: T le: A ≤ B pi1: fst(t) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  distinct-representatives pairwise_wf2 not_wf all_wf l_exists_wf l_member_wf exists_wf int_seg_wf length_wf nat_wf equipollent_wf select_wf int_seg_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma equal_wf sum_wf length_wf_nat decidable_wf equiv_rel_wf equipollent-partition count-by-equiv id-biject product_functionality_wrt_equipollent_dependent equipollent_transitivity equipollent_functionality_wrt_equipollent2 equipollent-sum equipollent_functionality_wrt_equipollent equipollent_weakening_ext-eq ext-eq_weakening equipollent-nsub non_neg_sum non_neg_length lelt_wf le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination independent_functionElimination hypothesis productElimination dependent_pairFormation independent_pairFormation sqequalRule productEquality instantiate cumulativity lambdaEquality applyEquality functionExtensionality universeEquality because_Cache setElimination rename setEquality functionEquality natural_numberEquality independent_isectElimination unionElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll imageElimination promote_hyp equalityTransitivity equalitySymmetry dependent_set_memberEquality applyLambdaEquality

Latex:
\mforall{}[A:Type].  \mforall{}[E:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    (EquivRel(A;x,y.E[x;y])
    {}\mRightarrow{}  (\mforall{}x,y:A.    Dec(E[x;y]))
    {}\mRightarrow{}  (\mforall{}k:\mBbbN{}
                (A  \msim{}  \mBbbN{}k
                {}\mRightarrow{}  (\mexists{}L:A  List
                          ((\mforall{}a,b\mmember{}L.    \mneg{}E[a;b])
                          \mwedge{}  (\mforall{}a:A.  (\mexists{}b\mmember{}L.  E[a;b]))
                          \mwedge{}  (\mexists{}f:\mBbbN{}||L||  {}\mrightarrow{}  \mBbbN{}
                                  ((\mforall{}i:\mBbbN{}||L||.  \{a:A|  E[a;L[i]]\}    \msim{}  \mBbbN{}f  i)
                                  \mwedge{}  A  \msim{}  i:\mBbbN{}||L||  \mtimes{}  \mBbbN{}f  i
                                  \mwedge{}  (k  =  \mSigma{}(f  i  |  i  <  ||L||)))))))))



Date html generated: 2017_04_17-AM-09_33_23
Last ObjectModification: 2017_02_27-PM-05_33_02

Theory : equipollence!!cardinality!


Home Index