Nuprl Lemma : count-by-equiv

[A:Type]. ∀[E:A ⟶ A ⟶ ℙ].
  (EquivRel(A;x,y.E[x;y])
   (∀L:A List. (∀a:A. (∃b∈L. E[a;b]))  i:ℕ||L|| × {a:A| E[a;L[i]]}  supposing (∀a,b∈L.  ¬E[a;b])))


Proof




Definitions occuring in Statement :  equipollent: B pairwise: (∀x,y∈L.  P[x; y]) l_exists: (∃x∈L. P[x]) select: L[n] length: ||as|| list: List equiv_rel: EquivRel(T;x,y.E[x; y]) int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] not: ¬A implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] product: x:A × B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] uimplies: supposing a member: t ∈ T pairwise: (∀x,y∈L.  P[x; y]) not: ¬A false: False so_lambda: λ2x.t[x] prop: so_apply: x[s1;s2] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q exists: x:A. B[x] l_member: (x ∈ l) cand: c∧ B so_lambda: λ2y.t[x; y] subtype_rel: A ⊆B guard: {T} nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top pi1: fst(t) equipollent: B int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T biject: Bij(A;B;f) inject: Inj(A;B;f) surject: Surj(A;B;f) pi2: snd(t) le: A ≤ B respects-equality: respects-equality(S;T) equiv_rel: EquivRel(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y])
Lemmas referenced :  l_exists_iff l_member_wf l_exists_wf pairwise_wf2 not_wf list_wf equiv_rel_wf istype-universe subtype_rel_self istype-less_than istype-nat length_wf select_wf non_neg_length decidable__le length_wf_nat nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformnot_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf istype-le int_seg_properties decidable__lt intformless_wf int_formula_prop_less_lemma int_seg_wf respects-equality-product nat_wf subtype-base-respects-equality set_subtype_base le_wf int_subtype_base respects-equality-set-trivial equal_functionality_wrt_subtype_rel2 decidable__equal_int intformeq_wf int_formula_prop_eq_lemma biject_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut introduction sqequalRule sqequalHypSubstitution Error :lambdaEquality_alt,  dependent_functionElimination thin hypothesisEquality voidElimination Error :functionIsTypeImplies,  Error :inhabitedIsType,  rename hypothesis extract_by_obid isectElimination because_Cache setElimination applyEquality Error :setIsType,  Error :universeIsType,  productElimination independent_functionElimination promote_hyp Error :functionIsType,  instantiate cumulativity universeEquality functionExtensionality Error :productIsType,  Error :equalityIstype,  independent_isectElimination unionElimination equalityTransitivity equalitySymmetry applyLambdaEquality natural_numberEquality approximateComputation Error :dependent_pairFormation_alt,  int_eqEquality Error :isect_memberEquality_alt,  independent_pairFormation Error :equalityIsType1,  hyp_replacement Error :dependent_pairEquality_alt,  Error :dependent_set_memberEquality_alt,  imageElimination independent_pairEquality setEquality intEquality closedConclusion sqequalBase productEquality

Latex:
\mforall{}[A:Type].  \mforall{}[E:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    (EquivRel(A;x,y.E[x;y])
    {}\mRightarrow{}  (\mforall{}L:A  List
                (\mforall{}a:A.  (\mexists{}b\mmember{}L.  E[a;b]))  {}\mRightarrow{}  A  \msim{}  i:\mBbbN{}||L||  \mtimes{}  \{a:A|  E[a;L[i]]\}    supposing  (\mforall{}a,b\mmember{}L.    \mneg{}E[a;b])))



Date html generated: 2019_06_20-PM-02_18_08
Last ObjectModification: 2018_11_23-PM-02_08_10

Theory : equipollence!!cardinality!


Home Index