Nuprl Lemma : product_functionality_wrt_equipollent_dependent

[A,B:Type]. ∀[C:A ⟶ Type]. ∀[D:B ⟶ Type].
  ∀f:A ⟶ B. (Bij(A;B;f)  (∀a:A. C[a] D[f a])  a:A × C[a] b:B × D[b])


Proof




Definitions occuring in Statement :  equipollent: B biject: Bij(A;B;f) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q equipollent: B exists: x:A. B[x] member: t ∈ T so_apply: x[s] prop: pi1: fst(t) biject: Bij(A;B;f) and: P ∧ Q inject: Inj(A;B;f) surject: Surj(A;B;f) pi2: snd(t) guard: {T} subtype_rel: A ⊆B uimplies: supposing a squash: T true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  equipollent_wf biject_wf istype-universe equal_wf subtype_rel-equal squash_wf true_wf subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  sqequalHypSubstitution sqequalRule cut hypothesis promote_hyp thin productElimination Error :functionIsType,  Error :universeIsType,  hypothesisEquality introduction extract_by_obid isectElimination applyEquality Error :inhabitedIsType,  instantiate universeEquality because_Cache functionExtensionality rename Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  Error :equalityIsType1,  equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination Error :dependent_pairEquality_alt,  Error :productIsType,  independent_pairFormation productEquality applyLambdaEquality independent_isectElimination Error :dependent_set_memberEquality_alt,  setElimination imageElimination natural_numberEquality imageMemberEquality baseClosed equalityElimination Error :equalityIstype

Latex:
\mforall{}[A,B:Type].  \mforall{}[C:A  {}\mrightarrow{}  Type].  \mforall{}[D:B  {}\mrightarrow{}  Type].
    \mforall{}f:A  {}\mrightarrow{}  B.  (Bij(A;B;f)  {}\mRightarrow{}  (\mforall{}a:A.  C[a]  \msim{}  D[f  a])  {}\mRightarrow{}  a:A  \mtimes{}  C[a]  \msim{}  b:B  \mtimes{}  D[b])



Date html generated: 2019_06_20-PM-02_16_49
Last ObjectModification: 2018_11_23-PM-02_55_47

Theory : equipollence!!cardinality!


Home Index