Nuprl Lemma : product_functionality_wrt_equipollent_dependent
∀[A,B:Type]. ∀[C:A ⟶ Type]. ∀[D:B ⟶ Type].
  ∀f:A ⟶ B. (Bij(A;B;f) 
⇒ (∀a:A. C[a] ~ D[f a]) 
⇒ a:A × C[a] ~ b:B × D[b])
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
biject: Bij(A;B;f)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
equipollent: A ~ B
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
so_apply: x[s]
, 
prop: ℙ
, 
pi1: fst(t)
, 
biject: Bij(A;B;f)
, 
and: P ∧ Q
, 
inject: Inj(A;B;f)
, 
surject: Surj(A;B;f)
, 
pi2: snd(t)
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
equipollent_wf, 
biject_wf, 
istype-universe, 
equal_wf, 
subtype_rel-equal, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
sqequalHypSubstitution, 
sqequalRule, 
cut, 
hypothesis, 
promote_hyp, 
thin, 
productElimination, 
Error :functionIsType, 
Error :universeIsType, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
applyEquality, 
Error :inhabitedIsType, 
instantiate, 
universeEquality, 
because_Cache, 
functionExtensionality, 
rename, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
Error :equalityIsType1, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
Error :dependent_pairEquality_alt, 
Error :productIsType, 
independent_pairFormation, 
productEquality, 
applyLambdaEquality, 
independent_isectElimination, 
Error :dependent_set_memberEquality_alt, 
setElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
equalityElimination, 
Error :equalityIstype
Latex:
\mforall{}[A,B:Type].  \mforall{}[C:A  {}\mrightarrow{}  Type].  \mforall{}[D:B  {}\mrightarrow{}  Type].
    \mforall{}f:A  {}\mrightarrow{}  B.  (Bij(A;B;f)  {}\mRightarrow{}  (\mforall{}a:A.  C[a]  \msim{}  D[f  a])  {}\mRightarrow{}  a:A  \mtimes{}  C[a]  \msim{}  b:B  \mtimes{}  D[b])
Date html generated:
2019_06_20-PM-02_16_49
Last ObjectModification:
2018_11_23-PM-02_55_47
Theory : equipollence!!cardinality!
Home
Index