Nuprl Lemma : equipollent-partition

k:ℕ
  ∀[A:Type]
    (A ~ ℕk
     (∀[P:A ⟶ ℙ]. ((∀x:A. Dec(P[x]))  (∃i,j:ℕ((k (i j) ∈ ℤ) ∧ {a:A| P[a]}  ~ ℕi ∧ {a:A| ¬P[a]}  ~ ℕj)))))


Proof




Definitions occuring in Statement :  equipollent: B int_seg: {i..j-} nat: decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] add: m natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q exists: x:A. B[x] decidable: Dec(P) or: P ∨ Q isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt cand: c∧ B rev_implies:  Q true: True bfalse: ff false: False not: ¬A so_apply: x[s] subtype_rel: A ⊆B prop: nat: so_lambda: λ2x.t[x] uimplies: supposing a squash: T guard: {T} uiff: uiff(P;Q) sq_stable: SqStable(P) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  equipollent-iff-list btrue_wf istype-true bfalse_wf istype-void subtype_rel_self decidable_wf equipollent_wf int_seg_wf istype-universe istype-nat length_wf_nat filter_wf5 l_member_wf bnot_wf set_subtype_base le_wf int_subtype_base length_wf not_wf equal_wf squash_wf true_wf filter-split-length iff_weakening_equal filter_type subtype_rel_list assert_wf subtype_rel_sets_simple istype-assert no_repeats_wf no_repeats-settype no_repeats_filter l_member-settype member_filter sq_stable_from_decidable decidable__assert assert_of_bnot subtype_rel_list_set
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination productElimination independent_functionElimination hypothesis rename applyEquality functionExtensionality inhabitedIsType unionElimination sqequalRule independent_pairFormation natural_numberEquality voidElimination universeIsType instantiate universeEquality equalityIstype equalityTransitivity equalitySymmetry because_Cache functionIsType setElimination dependent_pairFormation_alt lambdaEquality_alt setIsType productIsType intEquality independent_isectElimination addEquality sqequalBase setEquality baseApply closedConclusion baseClosed imageElimination imageMemberEquality hyp_replacement applyLambdaEquality

Latex:
\mforall{}k:\mBbbN{}
    \mforall{}[A:Type]
        (A  \msim{}  \mBbbN{}k
        {}\mRightarrow{}  (\mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}]
                    ((\mforall{}x:A.  Dec(P[x]))  {}\mRightarrow{}  (\mexists{}i,j:\mBbbN{}.  ((k  =  (i  +  j))  \mwedge{}  \{a:A|  P[a]\}    \msim{}  \mBbbN{}i  \mwedge{}  \{a:A|  \mneg{}P[a]\}    \msim{}  \mBbbN{}j))))\000C)



Date html generated: 2020_05_19-PM-10_00_34
Last ObjectModification: 2020_01_04-PM-08_00_14

Theory : equipollence!!cardinality!


Home Index