Nuprl Lemma : filter-split-length

[T:Type]. ∀[P:T ⟶ 𝔹]. ∀[L:T List].  ((||filter(λx.P[x];L)|| ||filter(λx.(¬bP[x]);L)||) ||L|| ∈ ℤ)


Proof




Definitions occuring in Statement :  length: ||as|| filter: filter(P;l) list: List bnot: ¬bb bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] lambda: λx.A[x] function: x:A ⟶ B[x] add: m int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop: implies:  Q all: x:A. B[x] top: Top bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bnot: ¬bb bfalse: ff decidable: Dec(P) or: P ∨ Q false: False satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A sq_type: SQType(T) guard: {T} assert: b
Lemmas referenced :  list_induction equal_wf length_wf filter_wf5 l_member_wf bnot_wf list_wf filter_nil_lemma length_of_nil_lemma filter_cons_lemma length_of_cons_lemma bool_wf eqtt_to_assert decidable__equal_int add-is-int-iff satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermAdd_wf itermVar_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf false_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality intEquality addEquality cumulativity applyEquality functionExtensionality setElimination rename hypothesis setEquality because_Cache independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality natural_numberEquality lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination equalityTransitivity equalitySymmetry pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed dependent_pairFormation int_eqEquality independent_pairFormation computeAll instantiate axiomEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:T  List].    ((||filter(\mlambda{}x.P[x];L)||  +  ||filter(\mlambda{}x.(\mneg{}\msubb{}P[x]);L)||)  =  ||L||)



Date html generated: 2017_04_17-AM-07_33_33
Last ObjectModification: 2017_02_27-PM-04_10_43

Theory : list_1


Home Index