Step
*
of Lemma
equipollent-union-sum
∀[A,B:Type]. ∀[C:A ⟶ Type]. ∀[D:B ⟶ Type].
a:A × C[a] + (b:B × D[b]) ~ d:A + B × case d of inl(a) => C[a] | inr(b) => D[b]
BY
{ (Auto
THEN (With ⌜λd.case d of inl(p) => let a,c = p in <inl a, c> | inr(p) => let b,d = p in <inr b , d>⌝ (D 0)⋅
THENA Auto
)
THEN D 0
THEN RepUR ``inject surject`` 0
THEN Auto) }
1
1. A : Type
2. B : Type
3. C : A ⟶ Type
4. D : B ⟶ Type
5. a1 : a:A × C[a] + (b:B × D[b])@i
6. a2 : a:A × C[a] + (b:B × D[b])@i
7. case a1 of inl(p) => let a,c = p in <inl a, c> | inr(p) => let b,d = p in <inr b , d>
= case a2 of inl(p) => let a,c = p in <inl a, c> | inr(p) => let b,d = p in <inr b , d>
∈ (d:A + B × case d of inl(a) => C[a] | inr(b) => D[b])
⊢ a1 = a2 ∈ (a:A × C[a] + (b:B × D[b]))
2
1. [A] : Type
2. [B] : Type
3. [C] : A ⟶ Type
4. [D] : B ⟶ Type
5. b : d:A + B × case d of inl(a) => C[a] | inr(b) => D[b]@i
⊢ ∃a:a:A × C[a] + (b:B × D[b])
(case a of inl(p) => let a,c = p in <inl a, c> | inr(p) => let b,d = p in <inr b , d>
= b
∈ (d:A + B × case d of inl(a) => C[a] | inr(b) => D[b]))
Latex:
Latex:
\mforall{}[A,B:Type]. \mforall{}[C:A {}\mrightarrow{} Type]. \mforall{}[D:B {}\mrightarrow{} Type].
a:A \mtimes{} C[a] + (b:B \mtimes{} D[b]) \msim{} d:A + B \mtimes{} case d of inl(a) => C[a] | inr(b) => D[b]
By
Latex:
(Auto
THEN (With \mkleeneopen{}\mlambda{}d.case d
of inl(p) =>
let a,c = p
in <inl a, c>
| inr(p) =>
let b,d = p
in <inr b , d>\mkleeneclose{} (D 0)\mcdot{}
THENA Auto
)
THEN D 0
THEN RepUR ``inject surject`` 0
THEN Auto)
Home
Index