Nuprl Lemma : equipollent-union-sum

[A,B:Type]. ∀[C:A ⟶ Type]. ∀[D:B ⟶ Type].
  a:A × C[a] (b:B × D[b]) d:A B × case of inl(a) => C[a] inr(b) => D[b]


Proof




Definitions occuring in Statement :  equipollent: B uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] product: x:A × B[x] decide: case of inl(x) => s[x] inr(y) => t[y] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] equipollent: B exists: x:A. B[x] member: t ∈ T so_apply: x[s] all: x:A. B[x] implies:  Q prop: biject: Bij(A;B;f) and: P ∧ Q inject: Inj(A;B;f) surject: Surj(A;B;f) so_lambda: λ2x.t[x] pi1: fst(t) pi2: snd(t) outl: outl(x) uimplies: supposing a isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt true: True sq_type: SQType(T) guard: {T} false: False outr: outr(x) bnot: ¬bb bfalse: ff
Lemmas referenced :  equal_wf biject_wf pi2_wf pi1_wf and_wf outl_wf assert_wf isl_wf subtype_base_sq int_subtype_base outr_wf bnot_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation dependent_pairFormation lambdaEquality cut hypothesisEquality equalityTransitivity hypothesis equalitySymmetry thin unionEquality productEquality applyEquality lambdaFormation unionElimination sqequalRule spreadEquality dependent_pairEquality inlEquality introduction extract_by_obid sqequalHypSubstitution isectElimination dependent_functionElimination independent_functionElimination inrEquality independent_pairFormation functionEquality cumulativity universeEquality productElimination applyLambdaEquality dependent_set_memberEquality setElimination rename independent_isectElimination promote_hyp hyp_replacement natural_numberEquality instantiate intEquality voidElimination because_Cache

Latex:
\mforall{}[A,B:Type].  \mforall{}[C:A  {}\mrightarrow{}  Type].  \mforall{}[D:B  {}\mrightarrow{}  Type].
    a:A  \mtimes{}  C[a]  +  (b:B  \mtimes{}  D[b])  \msim{}  d:A  +  B  \mtimes{}  case  d  of  inl(a)  =>  C[a]  |  inr(b)  =>  D[b]



Date html generated: 2019_06_20-PM-02_17_51
Last ObjectModification: 2018_08_21-PM-01_56_01

Theory : equipollence!!cardinality!


Home Index