Nuprl Lemma : equipollent-union-sum
∀[A,B:Type]. ∀[C:A ⟶ Type]. ∀[D:B ⟶ Type].
  a:A × C[a] + (b:B × D[b]) ~ d:A + B × case d of inl(a) => C[a] | inr(b) => D[b]
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
decide: case b of inl(x) => s[x] | inr(y) => t[y]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
equipollent: A ~ B
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
biject: Bij(A;B;f)
, 
and: P ∧ Q
, 
inject: Inj(A;B;f)
, 
surject: Surj(A;B;f)
, 
so_lambda: λ2x.t[x]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
outl: outl(x)
, 
uimplies: b supposing a
, 
isl: isl(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
true: True
, 
sq_type: SQType(T)
, 
guard: {T}
, 
false: False
, 
outr: outr(x)
, 
bnot: ¬bb
, 
bfalse: ff
Lemmas referenced : 
equal_wf, 
biject_wf, 
pi2_wf, 
pi1_wf, 
and_wf, 
outl_wf, 
assert_wf, 
isl_wf, 
subtype_base_sq, 
int_subtype_base, 
outr_wf, 
bnot_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
dependent_pairFormation, 
lambdaEquality, 
cut, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
thin, 
unionEquality, 
productEquality, 
applyEquality, 
lambdaFormation, 
unionElimination, 
sqequalRule, 
spreadEquality, 
dependent_pairEquality, 
inlEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
inrEquality, 
independent_pairFormation, 
functionEquality, 
cumulativity, 
universeEquality, 
productElimination, 
applyLambdaEquality, 
dependent_set_memberEquality, 
setElimination, 
rename, 
independent_isectElimination, 
promote_hyp, 
hyp_replacement, 
natural_numberEquality, 
instantiate, 
intEquality, 
voidElimination, 
because_Cache
Latex:
\mforall{}[A,B:Type].  \mforall{}[C:A  {}\mrightarrow{}  Type].  \mforall{}[D:B  {}\mrightarrow{}  Type].
    a:A  \mtimes{}  C[a]  +  (b:B  \mtimes{}  D[b])  \msim{}  d:A  +  B  \mtimes{}  case  d  of  inl(a)  =>  C[a]  |  inr(b)  =>  D[b]
Date html generated:
2019_06_20-PM-02_17_51
Last ObjectModification:
2018_08_21-PM-01_56_01
Theory : equipollence!!cardinality!
Home
Index