Step
*
1
1
1
of Lemma
finite-acyclic-rel
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. ∀x,y:T.  Dec(x R y)
⊢ ∀m:ℕ. ∀[T':Type]. ((T' ⊆r T) 
⇒ T' ~ ℕm 
⇒ acyclic-rel(T';R) 
⇒ SWellFounded(x R y))
BY
{ (InductionOnNat THEN Auto) }
1
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. ∀x,y:T.  Dec(x R y)
4. [T'] : Type
5. T' ⊆r T
6. T' ~ ℕ0
7. acyclic-rel(T';R)
⊢ SWellFounded(x R y)
2
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. ∀x,y:T.  Dec(x R y)
4. m : ℤ
5. [%2] : 0 < m
6. ∀[T':Type]. ((T' ⊆r T) 
⇒ T' ~ ℕm - 1 
⇒ acyclic-rel(T';R) 
⇒ SWellFounded(x R y))
7. [T'] : Type
8. T' ⊆r T
9. T' ~ ℕm
10. acyclic-rel(T';R)
⊢ SWellFounded(x R y)
Latex:
Latex:
1.  [T]  :  Type
2.  [R]  :  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}
3.  \mforall{}x,y:T.    Dec(x  R  y)
\mvdash{}  \mforall{}m:\mBbbN{}.  \mforall{}[T':Type].  ((T'  \msubseteq{}r  T)  {}\mRightarrow{}  T'  \msim{}  \mBbbN{}m  {}\mRightarrow{}  acyclic-rel(T';R)  {}\mRightarrow{}  SWellFounded(x  R  y))
By
Latex:
(InductionOnNat  THEN  Auto)
Home
Index