Step
*
1
1
1
of Lemma
finite-acyclic-rel
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. ∀x,y:T. Dec(x R y)
⊢ ∀m:ℕ. ∀[T':Type]. ((T' ⊆r T)
⇒ T' ~ ℕm
⇒ acyclic-rel(T';R)
⇒ SWellFounded(x R y))
BY
{ (InductionOnNat THEN Auto) }
1
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. ∀x,y:T. Dec(x R y)
4. [T'] : Type
5. T' ⊆r T
6. T' ~ ℕ0
7. acyclic-rel(T';R)
⊢ SWellFounded(x R y)
2
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. ∀x,y:T. Dec(x R y)
4. m : ℤ
5. [%2] : 0 < m
6. ∀[T':Type]. ((T' ⊆r T)
⇒ T' ~ ℕm - 1
⇒ acyclic-rel(T';R)
⇒ SWellFounded(x R y))
7. [T'] : Type
8. T' ⊆r T
9. T' ~ ℕm
10. acyclic-rel(T';R)
⊢ SWellFounded(x R y)
Latex:
Latex:
1. [T] : Type
2. [R] : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
3. \mforall{}x,y:T. Dec(x R y)
\mvdash{} \mforall{}m:\mBbbN{}. \mforall{}[T':Type]. ((T' \msubseteq{}r T) {}\mRightarrow{} T' \msim{} \mBbbN{}m {}\mRightarrow{} acyclic-rel(T';R) {}\mRightarrow{} SWellFounded(x R y))
By
Latex:
(InductionOnNat THEN Auto)
Home
Index