Nuprl Lemma : finite-acyclic-rel
∀[T:Type]. ((∃n:ℕ. T ~ ℕn) ⇒ (∀[R:T ⟶ T ⟶ ℙ]. ((∀x,y:T.  Dec(x R y)) ⇒ (SWellFounded(x R y) ⇐⇒ acyclic-rel(T;R)))))
Proof
Definitions occuring in Statement : 
equipollent: A ~ B, 
acyclic-rel: acyclic-rel(T;R), 
strongwellfounded: SWellFounded(R[x; y]), 
int_seg: {i..j-}, 
nat: ℕ, 
decidable: Dec(P), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
infix_ap: x f y, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
member: t ∈ T, 
acyclic-rel: acyclic-rel(T;R), 
all: ∀x:A. B[x], 
not: ¬A, 
false: False, 
infix_ap: x f y, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
rev_implies: P ⇐ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
nat: ℕ, 
exists: ∃x:A. B[x], 
uimplies: b supposing a, 
strongwellfounded: SWellFounded(R[x; y]), 
equipollent: A ~ B, 
rel_plus: R+, 
nat_plus: ℕ+, 
le: A ≤ B, 
less_than': less_than'(a;b), 
rel_exp: R^n, 
guard: {T}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
sq_type: SQType(T), 
cand: A c∧ B, 
pi1: fst(t), 
sq_exists: ∃x:{A| B[x]}, 
ge: i ≥ j , 
squash: ↓T, 
true: True, 
compose: f o g, 
subtract: n - m, 
rel-path-between: rel-path-between(T;R;x;y;L), 
bnot: ¬bb, 
assert: ↑b, 
nequal: a ≠ b ∈ T , 
biject: Bij(A;B;f), 
inject: Inj(A;B;f), 
less_than: a < b
Lemmas referenced : 
wellfounded-acyclic-rel, 
rel_plus_wf, 
strongwellfounded_wf, 
acyclic-rel_wf, 
all_wf, 
decidable_wf, 
exists_wf, 
nat_wf, 
equipollent_wf, 
int_seg_wf, 
subtype_rel_dep_function, 
subtype_rel_self, 
subtype_rel_wf, 
uall_wf, 
subtract_wf, 
infix_ap_wf, 
set_wf, 
less_than_wf, 
primrec-wf2, 
equipollent-zero, 
biject-inverse, 
rel_exp_wf, 
nat_plus_subtype_nat, 
nat_plus_properties, 
primrec-wf-nat-plus, 
false_wf, 
le_wf, 
rel_exp_one, 
int_seg_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
eq_int_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
assert_wf, 
bnot_wf, 
not_wf, 
equal-wf-base, 
int_subtype_base, 
bool_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_eq_int, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
equal_wf, 
bool_cases, 
subtype_base_sq, 
bool_subtype_base, 
add-subtract-cancel, 
nat_plus_wf, 
decidable__exists_int_seg, 
decidable__all_int_seg, 
decidable__not, 
pigeon-hole-implies, 
decidable__lt, 
fun_exp_wf, 
int_seg_subtype_nat, 
lelt_wf, 
sq_stable__equal, 
nat_properties, 
subtract-add-cancel, 
squash_wf, 
true_wf, 
fun_exp_add, 
le_weakening2, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
iff_weakening_equal, 
decidable__equal_int, 
fun_exp1_lemma, 
add-associates, 
add-swap, 
add-commutes, 
zero-add, 
fun_exp_add1, 
equipollent-general-subtract-one, 
subtype_rel_transitivity, 
subtype_rel_list, 
length_wf, 
rel-path-between_wf, 
rel_plus-iff-path, 
bool_cases_sqequal, 
assert-bnot, 
neg_assert_of_eq_int, 
add_nat_wf, 
and_wf, 
add_nat_plus, 
add-is-int-iff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
voidElimination, 
applyEquality, 
cumulativity, 
functionExtensionality, 
functionEquality, 
universeEquality, 
natural_numberEquality, 
setElimination, 
rename, 
productElimination, 
instantiate, 
because_Cache, 
independent_isectElimination, 
intEquality, 
dependent_pairFormation, 
dependent_set_memberEquality, 
addEquality, 
unionElimination, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
equalityElimination, 
impliesFunctionality, 
productEquality, 
promote_hyp, 
imageElimination, 
imageMemberEquality, 
hyp_replacement, 
setEquality, 
addLevel, 
levelHypothesis, 
pointwiseFunctionality
Latex:
\mforall{}[T:Type]
    ((\mexists{}n:\mBbbN{}.  T  \msim{}  \mBbbN{}n)
    {}\mRightarrow{}  (\mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}x,y:T.    Dec(x  R  y))  {}\mRightarrow{}  (SWellFounded(x  R  y)  \mLeftarrow{}{}\mRightarrow{}  acyclic-rel(T;R)))))
Date html generated:
2017_04_17-AM-09_35_53
Last ObjectModification:
2017_02_27-PM-05_35_42
Theory : equipollence!!cardinality!
Home
Index