Nuprl Lemma : strongwellfounded_wf

[T:Type]. ∀[R:T ⟶ T ⟶ Type].  (SWellFounded(R[x;y]) ∈ ℙ)


Proof




Definitions occuring in Statement :  strongwellfounded: SWellFounded(R[x; y]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  strongwellfounded: SWellFounded(R[x; y]) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s1;s2] subtype_rel: A ⊆B nat: so_apply: x[s]
Lemmas referenced :  exists_wf nat_wf all_wf less_than_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesisEquality hypothesis lambdaEquality applyEquality universeEquality setElimination rename because_Cache axiomEquality equalityTransitivity equalitySymmetry cumulativity isect_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  Type].    (SWellFounded(R[x;y])  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-PM-03_52_11
Last ObjectModification: 2015_12_26-PM-06_57_19

Theory : relations2


Home Index