Nuprl Lemma : wellfounded-acyclic-rel
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (SWellFounded(x R y) 
⇒ acyclic-rel(T;R))
Proof
Definitions occuring in Statement : 
acyclic-rel: acyclic-rel(T;R)
, 
strongwellfounded: SWellFounded(R[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
infix_ap: x f y
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
infix_ap: x f y
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s1;s2]
, 
acyclic-rel: acyclic-rel(T;R)
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
false: False
, 
strongwellfounded: SWellFounded(R[x; y])
, 
exists: ∃x:A. B[x]
, 
less_than: a < b
, 
squash: ↓T
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
Lemmas referenced : 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
itermVar_wf, 
intformless_wf, 
satisfiable-full-omega-tt, 
rel_plus_wf, 
strongwellfounded_wf, 
rel_plus_strongwellfounded
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
universeEquality, 
dependent_functionElimination, 
because_Cache, 
functionEquality, 
cumulativity, 
isect_memberEquality, 
voidElimination, 
productElimination, 
imageElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidEquality, 
computeAll
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (SWellFounded(x  R  y)  {}\mRightarrow{}  acyclic-rel(T;R))
Date html generated:
2016_05_14-PM-03_53_30
Last ObjectModification:
2016_01_14-PM-11_10_38
Theory : relations2
Home
Index