Nuprl Lemma : wellfounded-acyclic-rel

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (SWellFounded(x y)  acyclic-rel(T;R))


Proof




Definitions occuring in Statement :  acyclic-rel: acyclic-rel(T;R) strongwellfounded: SWellFounded(R[x; y]) uall: [x:A]. B[x] prop: infix_ap: y implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q prop: so_lambda: λ2y.t[x; y] infix_ap: y subtype_rel: A ⊆B so_apply: x[s1;s2] acyclic-rel: acyclic-rel(T;R) all: x:A. B[x] not: ¬A false: False strongwellfounded: SWellFounded(R[x; y]) exists: x:A. B[x] less_than: a < b squash: T and: P ∧ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  int_formula_prop_wf int_term_value_var_lemma int_formula_prop_less_lemma itermVar_wf intformless_wf satisfiable-full-omega-tt rel_plus_wf strongwellfounded_wf rel_plus_strongwellfounded
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis sqequalRule lambdaEquality applyEquality universeEquality dependent_functionElimination because_Cache functionEquality cumulativity isect_memberEquality voidElimination productElimination imageElimination natural_numberEquality independent_isectElimination dependent_pairFormation int_eqEquality intEquality voidEquality computeAll

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (SWellFounded(x  R  y)  {}\mRightarrow{}  acyclic-rel(T;R))



Date html generated: 2016_05_14-PM-03_53_30
Last ObjectModification: 2016_01_14-PM-11_10_38

Theory : relations2


Home Index