Nuprl Lemma : rel_plus_strongwellfounded

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (SWellFounded(x y)  SWellFounded(x R+ y))


Proof




Definitions occuring in Statement :  strongwellfounded: SWellFounded(R[x; y]) rel_plus: R+ uall: [x:A]. B[x] prop: infix_ap: y implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  strongwellfounded: SWellFounded(R[x; y]) uall: [x:A]. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T all: x:A. B[x] rel_plus: R+ infix_ap: y nat_plus: + prop: so_lambda: λ2x.t[x] nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top and: P ∧ Q subtype_rel: A ⊆B so_apply: x[s] rel_exp: R^n eq_int: (i =z j) subtract: m ifthenelse: if then else fi  bfalse: ff btrue: tt le: A ≤ B less_than': less_than'(a;b) bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) guard: {T} less_than: a < b squash: T true: True
Lemmas referenced :  nat_plus_properties all_wf infix_ap_wf rel_exp_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf less_than_wf primrec-wf-nat-plus nat_plus_subtype_nat nat_plus_wf rel_plus_wf exists_wf nat_wf false_wf itermAdd_wf int_term_value_add_lemma eq_int_wf bool_wf equal-wf-base int_subtype_base assert_wf bnot_wf not_wf uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot equal_wf intformeq_wf int_formula_prop_eq_lemma decidable__equal_int subtype_base_sq subtract_wf add-subtract-cancel decidable__lt add-associates add-swap add-commutes zero-add squash_wf true_wf and_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin dependent_pairFormation hypothesisEquality cut rename introduction extract_by_obid isectElimination hypothesis setElimination cumulativity lambdaEquality because_Cache functionEquality instantiate universeEquality dependent_set_memberEquality dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll functionExtensionality applyEquality independent_functionElimination equalitySymmetry hyp_replacement applyLambdaEquality addEquality baseApply closedConclusion baseClosed equalityElimination impliesFunctionality equalityTransitivity productEquality imageElimination imageMemberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (SWellFounded(x  R  y)  {}\mRightarrow{}  SWellFounded(x  R\msupplus{}  y))



Date html generated: 2017_04_17-AM-09_26_42
Last ObjectModification: 2017_02_27-PM-05_27_57

Theory : relations2


Home Index