Nuprl Lemma : acyclic-rel_wf
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (acyclic-rel(T;R) ∈ ℙ)
Proof
Definitions occuring in Statement : 
acyclic-rel: acyclic-rel(T;R)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
acyclic-rel: acyclic-rel(T;R)
, 
so_lambda: λ2x.t[x]
, 
infix_ap: x f y
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
not_wf, 
rel_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
hypothesis, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality, 
isect_memberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (acyclic-rel(T;R)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_14-PM-03_53_28
Last ObjectModification:
2015_12_26-PM-06_56_47
Theory : relations2
Home
Index