Nuprl Lemma : acyclic-rel_wf

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (acyclic-rel(T;R) ∈ ℙ)


Proof




Definitions occuring in Statement :  acyclic-rel: acyclic-rel(T;R) uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T acyclic-rel: acyclic-rel(T;R) so_lambda: λ2x.t[x] infix_ap: y prop: subtype_rel: A ⊆B so_apply: x[s]
Lemmas referenced :  all_wf not_wf rel_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis because_Cache axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality isect_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (acyclic-rel(T;R)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-PM-03_53_28
Last ObjectModification: 2015_12_26-PM-06_56_47

Theory : relations2


Home Index