Nuprl Lemma : rel-path-between_wf

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[L:T List]. ∀[x,y:T].  (rel-path-between(T;R;x;y;L) ∈ ℙ)


Proof




Definitions occuring in Statement :  rel-path-between: rel-path-between(T;R;x;y;L) list: List uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  rel-path-between: rel-path-between(T;R;x;y;L) uall: [x:A]. B[x] member: t ∈ T prop: and: P ∧ Q uimplies: supposing a ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top assert: b ifthenelse: if then else fi  btrue: tt less_than': less_than'(a;b) cons: [a b] bfalse: ff
Lemmas referenced :  rel-path_wf less_than_wf length_wf equal_wf hd_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf last_wf list-cases null_nil_lemma length_of_nil_lemma product_subtype_list null_cons_lemma length_of_cons_lemma false_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut productEquality extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality functionExtensionality applyEquality because_Cache hypothesis natural_numberEquality independent_isectElimination dependent_functionElimination unionElimination imageElimination productElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll promote_hyp hypothesis_subsumption lambdaFormation axiomEquality equalityTransitivity equalitySymmetry functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[L:T  List].  \mforall{}[x,y:T].    (rel-path-between(T;R;x;y;L)  \mmember{}  \mBbbP{})



Date html generated: 2017_04_17-AM-09_26_55
Last ObjectModification: 2017_02_27-PM-05_27_45

Theory : relations2


Home Index