Nuprl Lemma : rel-path-between_wf
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[L:T List]. ∀[x,y:T].  (rel-path-between(T;R;x;y;L) ∈ ℙ)
Proof
Definitions occuring in Statement : 
rel-path-between: rel-path-between(T;R;x;y;L)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
rel-path-between: rel-path-between(T;R;x;y;L)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
less_than: a < b
, 
squash: ↓T
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
less_than': less_than'(a;b)
, 
cons: [a / b]
, 
bfalse: ff
Lemmas referenced : 
rel-path_wf, 
less_than_wf, 
length_wf, 
equal_wf, 
hd_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
last_wf, 
list-cases, 
null_nil_lemma, 
length_of_nil_lemma, 
product_subtype_list, 
null_cons_lemma, 
length_of_cons_lemma, 
false_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
productEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
because_Cache, 
hypothesis, 
natural_numberEquality, 
independent_isectElimination, 
dependent_functionElimination, 
unionElimination, 
imageElimination, 
productElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
promote_hyp, 
hypothesis_subsumption, 
lambdaFormation, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[L:T  List].  \mforall{}[x,y:T].    (rel-path-between(T;R;x;y;L)  \mmember{}  \mBbbP{})
Date html generated:
2017_04_17-AM-09_26_55
Last ObjectModification:
2017_02_27-PM-05_27_45
Theory : relations2
Home
Index