Nuprl Lemma : rel-path_wf
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[L:T List]. (rel-path(R;L) ∈ ℙ)
Proof
Definitions occuring in Statement :
rel-path: rel-path(R;L)
,
list: T List
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
rel-path: rel-path(R;L)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
prop: ℙ
,
int_seg: {i..j-}
,
uimplies: b supposing a
,
guard: {T}
,
lelt: i ≤ j < k
,
and: P ∧ Q
,
all: ∀x:A. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
implies: P
⇒ Q
,
not: ¬A
,
top: Top
,
less_than: a < b
,
squash: ↓T
,
uiff: uiff(P;Q)
,
so_apply: x[s]
Lemmas referenced :
list_wf,
int_term_value_add_lemma,
itermAdd_wf,
false_wf,
int_term_value_subtract_lemma,
int_formula_prop_less_lemma,
itermSubtract_wf,
intformless_wf,
subtract-is-int-iff,
decidable__lt,
int_formula_prop_wf,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_le_lemma,
int_formula_prop_not_lemma,
int_formula_prop_and_lemma,
itermVar_wf,
itermConstant_wf,
intformle_wf,
intformnot_wf,
intformand_wf,
satisfiable-full-omega-tt,
decidable__le,
int_seg_properties,
select_wf,
infix_ap_wf,
length_wf,
subtract_wf,
int_seg_wf,
all_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
natural_numberEquality,
cumulativity,
hypothesisEquality,
hypothesis,
lambdaEquality,
instantiate,
because_Cache,
universeEquality,
setElimination,
rename,
independent_isectElimination,
productElimination,
dependent_functionElimination,
unionElimination,
dependent_pairFormation,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
independent_pairFormation,
computeAll,
pointwiseFunctionality,
equalityTransitivity,
equalitySymmetry,
promote_hyp,
imageElimination,
baseApply,
closedConclusion,
baseClosed,
addEquality,
axiomEquality,
functionEquality
Latex:
\mforall{}[T:Type]. \mforall{}[R:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}]. \mforall{}[L:T List]. (rel-path(R;L) \mmember{} \mBbbP{})
Date html generated:
2016_05_14-PM-03_52_49
Last ObjectModification:
2016_01_14-PM-11_10_53
Theory : relations2
Home
Index