Nuprl Lemma : rel-path_wf

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[L:T List].  (rel-path(R;L) ∈ ℙ)


Proof




Definitions occuring in Statement :  rel-path: rel-path(R;L) list: List uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  rel-path: rel-path(R;L) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top less_than: a < b squash: T uiff: uiff(P;Q) so_apply: x[s]
Lemmas referenced :  list_wf int_term_value_add_lemma itermAdd_wf false_wf int_term_value_subtract_lemma int_formula_prop_less_lemma itermSubtract_wf intformless_wf subtract-is-int-iff decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le int_seg_properties select_wf infix_ap_wf length_wf subtract_wf int_seg_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality cumulativity hypothesisEquality hypothesis lambdaEquality instantiate because_Cache universeEquality setElimination rename independent_isectElimination productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll pointwiseFunctionality equalityTransitivity equalitySymmetry promote_hyp imageElimination baseApply closedConclusion baseClosed addEquality axiomEquality functionEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[L:T  List].    (rel-path(R;L)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-PM-03_52_49
Last ObjectModification: 2016_01_14-PM-11_10_53

Theory : relations2


Home Index