Nuprl Lemma : rel_plus-iff-path

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀x,y:T.  (x R+ ⇐⇒ ∃L:T List. (1 < ||L|| ∧ rel-path-between(T;R;x;y;L)))


Proof




Definitions occuring in Statement :  rel-path-between: rel-path-between(T;R;x;y;L) rel_plus: R+ length: ||as|| list: List less_than: a < b uall: [x:A]. B[x] prop: infix_ap: y all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] rel_plus: R+ infix_ap: y iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] member: t ∈ T cand: c∧ B nat_plus: + decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) true: True less_than: a < b squash: T
Lemmas referenced :  nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformeq_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_formula_prop_wf less_than_wf length_wf rel-path-between_wf exists_wf nat_plus_wf list_wf equal_wf subtract_wf false_wf not-lt-2 less-iff-le condition-implies-le minus-add minus-minus minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-swap le-add-cancel decidable__equal_int itermSubtract_wf int_term_value_subtract_lemma rel_exp-iff-path nat_plus_subtype_nat rel_exp_wf iff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalRule cut independent_pairFormation sqequalHypSubstitution productElimination thin dependent_pairFormation hypothesisEquality introduction extract_by_obid isectElimination hypothesis setElimination rename dependent_functionElimination natural_numberEquality equalityTransitivity equalitySymmetry unionElimination independent_isectElimination approximateComputation independent_functionElimination lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality productEquality addEquality dependent_set_memberEquality minusEquality applyEquality because_Cache imageElimination addLevel cumulativity functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}x,y:T.    (x  R\msupplus{}  y  \mLeftarrow{}{}\mRightarrow{}  \mexists{}L:T  List.  (1  <  ||L||  \mwedge{}  rel-path-between(T;R;x;y;L)))



Date html generated: 2019_06_20-PM-02_02_13
Last ObjectModification: 2018_08_24-PM-11_35_59

Theory : relations2


Home Index