Nuprl Lemma : fset-union-empty
∀[eq,s:Top].  (s ⋃ {} ~ s)
Proof
Definitions occuring in Statement : 
empty-fset: {}
, 
fset-union: x ⋃ y
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
empty-fset: {}
, 
fset-union: x ⋃ y
, 
l-union: as ⋃ bs
, 
all: ∀x:A. B[x]
, 
top: Top
Lemmas referenced : 
reduce_nil_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
sqequalAxiom, 
isectElimination, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[eq,s:Top].    (s  \mcup{}  \{\}  \msim{}  s)
Date html generated:
2016_05_14-PM-03_40_46
Last ObjectModification:
2015_12_26-PM-06_40_42
Theory : finite!sets
Home
Index