Step
*
1
2
1
2
of Lemma
Dickson's lemma
1. p : ℕ
2. ∀p1:ℕp. ∀A:ℕp1 ⟶ ℕ ⟶ ℕ. ∃j:ℕ. ∃i:ℕj. ∀k:ℕp1. (A[k;i] ≤ A[k;j])
3. A : ℕp ⟶ ℕ ⟶ ℕ
4. ¬(p = 0 ∈ ℤ)
5. n : ℤ
6. [%5] : 0 < n
7. ∀m:ℕ. ∃i:ℕ. (m < i ∧ ((∃b:ℕ. ∃a:ℕb. ∀k:ℕp. (A[k;a] ≤ A[k;b])) ∨ ((n - 1) ≤ A[0;i])))
8. m : ℕ
⊢ ∃i:ℕ. (m < i ∧ ((∃b:ℕ. ∃a:ℕb. ∀k:ℕp. (A[k;a] ≤ A[k;b])) ∨ (n ≤ A[0;i])))
BY
{ (Skolemize (-2) `G' THENA Auto) }
1
1. p : ℕ
2. ∀p1:ℕp. ∀A:ℕp1 ⟶ ℕ ⟶ ℕ. ∃j:ℕ. ∃i:ℕj. ∀k:ℕp1. (A[k;i] ≤ A[k;j])
3. A : ℕp ⟶ ℕ ⟶ ℕ
4. ¬(p = 0 ∈ ℤ)
5. n : ℤ
6. [%5] : 0 < n
7. ∀m1:ℕ. ∃i:ℕ. (m1 < i ∧ ((∃b:ℕ. ∃a:ℕb. ∀k:ℕp. (A[k;a] ≤ A[k;b])) ∨ ((n - 1) ≤ A[0;i])))
8. m : ℕ
9. G : m1:ℕ ⟶ ℕ
10. ∀m1:ℕ. (m1 < G m1 ∧ ((∃b:ℕ. ∃a:ℕb. ∀k:ℕp. (A[k;a] ≤ A[k;b])) ∨ ((n - 1) ≤ A[0;G m1])))
⊢ ∃i:ℕ. (m < i ∧ ((∃b:ℕ. ∃a:ℕb. ∀k:ℕp. (A[k;a] ≤ A[k;b])) ∨ (n ≤ A[0;i])))
Latex:
Latex:
1. p : \mBbbN{}
2. \mforall{}p1:\mBbbN{}p. \mforall{}A:\mBbbN{}p1 {}\mrightarrow{} \mBbbN{} {}\mrightarrow{} \mBbbN{}. \mexists{}j:\mBbbN{}. \mexists{}i:\mBbbN{}j. \mforall{}k:\mBbbN{}p1. (A[k;i] \mleq{} A[k;j])
3. A : \mBbbN{}p {}\mrightarrow{} \mBbbN{} {}\mrightarrow{} \mBbbN{}
4. \mneg{}(p = 0)
5. n : \mBbbZ{}
6. [\%5] : 0 < n
7. \mforall{}m:\mBbbN{}. \mexists{}i:\mBbbN{}. (m < i \mwedge{} ((\mexists{}b:\mBbbN{}. \mexists{}a:\mBbbN{}b. \mforall{}k:\mBbbN{}p. (A[k;a] \mleq{} A[k;b])) \mvee{} ((n - 1) \mleq{} A[0;i])))
8. m : \mBbbN{}
\mvdash{} \mexists{}i:\mBbbN{}. (m < i \mwedge{} ((\mexists{}b:\mBbbN{}. \mexists{}a:\mBbbN{}b. \mforall{}k:\mBbbN{}p. (A[k;a] \mleq{} A[k;b])) \mvee{} (n \mleq{} A[0;i])))
By
Latex:
(Skolemize (-2) `G' THENA Auto)
Home
Index