Step
*
1
1
1
2
1
of Lemma
cWO-induction-extract-sqequal
1. f : Base
2. t : Base
3. G : Base
4. G ~ λf,bar_recursion,n,s. case if (0) < (n)
then if s (n - 1) then inr (λp.let _,_ = p in Ax) else inl <Ax, Ax> fi
else (inr (λp.let _,_ = p
in Ax) )
of inl(r) =>
λa.let _,_ = r
in Ax
| inr(r) =>
λa.(f a (λs1.(bar_recursion (n + 1) (λm.if m=n then inl a else (s m)) s1)))
5. s1 : Base
6. ∀n:ℕ+. ∀x:Base. (G f fix((G f)) n (λm.if m=n - 1 then inl t else (x m)) s1 ~ f s1 fix((λF,t. (f t F))))
7. G f fix((G f)) 1 (λm.if m=0 then inl t else if (m) < (0) then 0 m else ⊥) s1 ~ f s1 fix((λF,t. (f t F)))
⊢ f s1 fix((λF,t. (f t F))) ~ G f fix((G f)) 1 (λm.if m=0 then inl t else if (m) < (0) then 0 m else ⊥) s1
BY
{ (HypSubst' (-1) 0 THEN Auto) }
Latex:
Latex:
1. f : Base
2. t : Base
3. G : Base
4. G \msim{} \mlambda{}f,bar$_{recursion}$,n,s. case if (0) < (n)
then if s (n - 1)
then inr (\mlambda{}p.let $_{}$,$_{\mbackslash{}\000Cff7d$ = p
in Ax)
else inl <Ax, Ax>
fi
else (inr (\mlambda{}p.let $_{}$,$_{}\000C$ = p
in Ax) )
of inl(r) =>
\mlambda{}a.let $_{}$,$_{}$ = r
in Ax
| inr(r) =>
\mlambda{}a.(f a
(\mlambda{}s1.(bar$_{recursion}$ (n + 1) (\mlambda{}m.if m=n then\000C inl a else (s m)) s1)))
5. s1 : Base
6. \mforall{}n:\mBbbN{}\msupplus{}. \mforall{}x:Base.
(G f fix((G f)) n (\mlambda{}m.if m=n - 1 then inl t else (x m)) s1 \msim{} f s1 fix((\mlambda{}F,t. (f t F))))
7. G f fix((G f)) 1 (\mlambda{}m.if m=0 then inl t else if (m) < (0) then 0 m else \mbot{}) s1 \msim{} f s1
fix((\mlambda{}F,t. (f
t
F)\000C))
\mvdash{} f s1 fix((\mlambda{}F,t. (f t F))) \msim{} G f fix((G f)) 1
(\mlambda{}m.if m=0 then inl t else if (m) < (0) then 0 m else \mbot{})
s1
By
Latex:
(HypSubst' (-1) 0 THEN Auto)
Home
Index