Nuprl Lemma : comb_for_compose_wf
λA,B,C,f,g,z. (f o g) ∈ A:Type ⟶ B:Type ⟶ C:Type ⟶ f:(B ⟶ C) ⟶ g:(A ⟶ B) ⟶ (↓True) ⟶ A ⟶ C
Proof
Definitions occuring in Statement : 
compose: f o g
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
compose_wf, 
squash_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
Error :universeIsType, 
Error :functionIsType, 
Error :inhabitedIsType, 
universeEquality
Latex:
\mlambda{}A,B,C,f,g,z.  (f  o  g)  \mmember{}  A:Type  {}\mrightarrow{}  B:Type  {}\mrightarrow{}  C:Type  {}\mrightarrow{}  f:(B  {}\mrightarrow{}  C)  {}\mrightarrow{}  g:(A  {}\mrightarrow{}  B)  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  A  {}\mrightarrow{}  C
Date html generated:
2019_06_20-PM-00_26_16
Last ObjectModification:
2018_09_28-PM-11_40_36
Theory : fun_1
Home
Index