Nuprl Lemma : lifting-apply-callbyvalueall
∀[a,B,c:Top].  (let x ⟵ a in B[x] c ~ let x ⟵ a in B[x] c)
Proof
Definitions occuring in Statement : 
callbyvalueall: callbyvalueall, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
apply: f a
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
so_apply: x[s]
Lemmas referenced : 
lifting-apply-callbyvalueall, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
sqequalAxiom, 
because_Cache
Latex:
\mforall{}[a,B,c:Top].    (let  x  \mleftarrow{}{}  a  in  B[x]  c  \msim{}  let  x  \mleftarrow{}{}  a  in  B[x]  c)
Date html generated:
2016_05_13-PM-04_08_25
Last ObjectModification:
2015_12_26-AM-11_03_12
Theory : fun_1
Home
Index