Nuprl Lemma : comb_for_int_seg_wf
λm,n,z. {m..n-} ∈ m:ℤ ⟶ n:ℤ ⟶ (↓True) ⟶ 𝕌1
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
int_seg_wf, 
squash_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
instantiate, 
hypothesis, 
Error :universeIsType, 
Error :inhabitedIsType, 
intEquality
Latex:
\mlambda{}m,n,z.  \{m..n\msupminus{}\}  \mmember{}  m:\mBbbZ{}  {}\mrightarrow{}  n:\mBbbZ{}  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbU{}\msubone{}
Date html generated:
2019_06_20-AM-11_33_16
Last ObjectModification:
2018_09_28-PM-11_42_00
Theory : int_1
Home
Index