Nuprl Lemma : comb_for_int_seg_wf

λm,n,z. {m..n-} ∈ m:ℤ ⟶ n:ℤ ⟶ (↓True) ⟶ 𝕌1


Proof




Definitions occuring in Statement :  int_seg: {i..j-} squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] int: universe: Type
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop:
Lemmas referenced :  int_seg_wf squash_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaEquality_alt,  sqequalHypSubstitution imageElimination cut introduction extract_by_obid isectElimination thin hypothesisEquality instantiate hypothesis Error :universeIsType,  Error :inhabitedIsType,  intEquality

Latex:
\mlambda{}m,n,z.  \{m..n\msupminus{}\}  \mmember{}  m:\mBbbZ{}  {}\mrightarrow{}  n:\mBbbZ{}  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbU{}\msubone{}



Date html generated: 2019_06_20-AM-11_33_16
Last ObjectModification: 2018_09_28-PM-11_42_00

Theory : int_1


Home Index