Nuprl Lemma : natrec-unroll
∀[g,n:Top].  (letrec f(n)=g[n;f] in f n ~ g[n;letrec f(n)=g[n;f] in f])
Proof
Definitions occuring in Statement : 
natrec: natrec, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
apply: f a
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
natrec: natrec, 
genrec: genrec
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
hypothesis, 
sqequalAxiom, 
lemma_by_obid, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[g,n:Top].    (letrec  f(n)=g[n;f]  in  f  n  \msim{}  g[n;letrec  f(n)=g[n;f]  in  f])
Date html generated:
2016_05_13-PM-04_03_16
Last ObjectModification:
2015_12_26-AM-10_56_04
Theory : int_1
Home
Index