Nuprl Lemma : comb_for_remainder_wf

λa,n,z. (a rem n) ∈ a:ℕ ⟶ n:ℕ+ ⟶ (↓True) ⟶ ℕ


Proof




Definitions occuring in Statement :  nat_plus: + nat: squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] remainder: rem m
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop:
Lemmas referenced :  remainder_wf squash_wf true_wf nat_plus_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaEquality_alt,  sqequalHypSubstitution imageElimination cut introduction extract_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry Error :universeIsType

Latex:
\mlambda{}a,n,z.  (a  rem  n)  \mmember{}  a:\mBbbN{}  {}\mrightarrow{}  n:\mBbbN{}\msupplus{}  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbN{}



Date html generated: 2019_06_20-PM-01_13_59
Last ObjectModification: 2018_10_03-AM-00_45_32

Theory : int_2


Home Index