Nuprl Lemma : comb_for_remainder_wf
λa,n,z. (a rem n) ∈ a:ℕ ⟶ n:ℕ+ ⟶ (↓True) ⟶ ℕ
Proof
Definitions occuring in Statement : 
nat_plus: ℕ+
, 
nat: ℕ
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
remainder: n rem m
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
remainder_wf, 
squash_wf, 
true_wf, 
nat_plus_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
Error :universeIsType
Latex:
\mlambda{}a,n,z.  (a  rem  n)  \mmember{}  a:\mBbbN{}  {}\mrightarrow{}  n:\mBbbN{}\msupplus{}  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbN{}
Date html generated:
2019_06_20-PM-01_13_59
Last ObjectModification:
2018_10_03-AM-00_45_32
Theory : int_2
Home
Index