Step * 1 2 1 of Lemma divide-and-conquer


1. [Q] a:ℤ ⟶ {a...} ⟶ ℙ
2. {2...}
3. ∀a:ℤ. ∀b:{a..a s-}.  Q[a;b]
4. ∀a,b,c:ℤ.  (Q[a;c]  Q[a;b]) ∨ (Q[c;b]  Q[a;b]) supposing a < c ∧ c < b
5. ∀[d:ℕ]. ∀a:ℤ. ∀b:{a..a d-}.  Q[a;b]
6. : ℤ
7. {a...}
⊢ Q[a;b]
BY
(InstHyp [⌜(b a) 1⌝;⌜a⌝;⌜b⌝(-3)⋅ THEN Auto) }


Latex:


Latex:

1.  [Q]  :  a:\mBbbZ{}  {}\mrightarrow{}  \{a...\}  {}\mrightarrow{}  \mBbbP{}
2.  s  :  \{2...\}
3.  \mforall{}a:\mBbbZ{}.  \mforall{}b:\{a..a  +  s\msupminus{}\}.    Q[a;b]
4.  \mforall{}a,b,c:\mBbbZ{}.    (Q[a;c]  {}\mRightarrow{}  Q[a;b])  \mvee{}  (Q[c;b]  {}\mRightarrow{}  Q[a;b])  supposing  a  <  c  \mwedge{}  c  <  b
5.  \mforall{}[d:\mBbbN{}].  \mforall{}a:\mBbbZ{}.  \mforall{}b:\{a..a  +  d\msupminus{}\}.    Q[a;b]
6.  a  :  \mBbbZ{}
7.  b  :  \{a...\}
\mvdash{}  Q[a;b]


By


Latex:
(InstHyp  [\mkleeneopen{}(b  -  a)  +  1\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{}]  (-3)\mcdot{}  THEN  Auto)




Home Index