Step
*
1
1
1
of Lemma
exact-xover_wf
1. d : ℕ
2. ∀d:ℕd
∀[n:ℤ]. ∀[f:{n...} ⟶ 𝔹].
exact-xover(f;n) ∈ {x:ℤ| (n ≤ x) ∧ f x = ff ∧ f (x + 1) = tt}
supposing (∃m:{n..n + d-}. ((∀k:{n..m-}. f k = ff) ∧ (∀k:{m...}. f k = tt))) ∧ f n = ff
3. n : ℤ
4. f : {n...} ⟶ 𝔹
5. (∃m:{n..n + d-}. ((∀k:{n..m-}. f k = ff) ∧ (∀k:{m...}. f k = tt))) ∧ f n = ff
6. v : n':{n':ℤ| (n ≤ n') ∧ f n' = tt} × {x':ℤ|
((n' = n ∈ ℤ) ∧ (x' = n ∈ ℤ))
∨ (((n ≤ x') ∧ f x' = ff) ∧ ((n' = (n + 1) ∈ ℤ) ∨ ((n + 1) ≤ x')))}
7. find-xover(f;n;n;1)
= v
∈ (n':{n':ℤ| (n ≤ n') ∧ f n' = tt} × {x':ℤ|
((n' = n ∈ ℤ) ∧ (x' = n ∈ ℤ))
∨ (((n ≤ x') ∧ f x' = ff) ∧ ((n' = (n + 1) ∈ ℤ) ∨ ((n + 1) ≤ x')))} )
⊢ let b,a = v
in if b=a + 1 then a else exact-xover(f;a) ∈ {x:ℤ| (n ≤ x) ∧ f x = ff ∧ f (x + 1) = tt}
BY
{ (D -2 THEN Reduce 0 THEN DSetVars) }
1
1. d : ℕ
2. ∀d:ℕd
∀[n:ℤ]. ∀[f:{n...} ⟶ 𝔹].
exact-xover(f;n) ∈ {x:ℤ| (n ≤ x) ∧ f x = ff ∧ f (x + 1) = tt}
supposing (∃m:{n..n + d-}. ((∀k:{n..m-}. f k = ff) ∧ (∀k:{m...}. f k = tt))) ∧ f n = ff
3. n : ℤ
4. f : {n...} ⟶ 𝔹
5. (∃m:{n..n + d-}. ((∀k:{n..m-}. f k = ff) ∧ (∀k:{m...}. f k = tt))) ∧ f n = ff
6. n' : ℤ
7. (n ≤ n') ∧ f n' = tt
8. v1 : ℤ
9. ((n' = n ∈ ℤ) ∧ (v1 = n ∈ ℤ)) ∨ (((n ≤ v1) ∧ f v1 = ff) ∧ ((n' = (n + 1) ∈ ℤ) ∨ ((n + 1) ≤ v1)))
10. find-xover(f;n;n;1)
= <n', v1>
∈ (n':{n':ℤ| (n ≤ n') ∧ f n' = tt} × {x':ℤ|
((n' = n ∈ ℤ) ∧ (x' = n ∈ ℤ))
∨ (((n ≤ x') ∧ f x' = ff) ∧ ((n' = (n + 1) ∈ ℤ) ∨ ((n + 1) ≤ x')))} )
⊢ if n'=v1 + 1 then v1 else exact-xover(f;v1) ∈ {x:ℤ| (n ≤ x) ∧ f x = ff ∧ f (x + 1) = tt}
Latex:
Latex:
1. d : \mBbbN{}
2. \mforall{}d:\mBbbN{}d
\mforall{}[n:\mBbbZ{}]. \mforall{}[f:\{n...\} {}\mrightarrow{} \mBbbB{}].
exact-xover(f;n) \mmember{} \{x:\mBbbZ{}| (n \mleq{} x) \mwedge{} f x = ff \mwedge{} f (x + 1) = tt\}
supposing (\mexists{}m:\{n..n + d\msupminus{}\}. ((\mforall{}k:\{n..m\msupminus{}\}. f k = ff) \mwedge{} (\mforall{}k:\{m...\}. f k = tt))) \mwedge{} f n = ff
3. n : \mBbbZ{}
4. f : \{n...\} {}\mrightarrow{} \mBbbB{}
5. (\mexists{}m:\{n..n + d\msupminus{}\}. ((\mforall{}k:\{n..m\msupminus{}\}. f k = ff) \mwedge{} (\mforall{}k:\{m...\}. f k = tt))) \mwedge{} f n = ff
6. v : n':\{n':\mBbbZ{}| (n \mleq{} n') \mwedge{} f n' = tt\} \mtimes{} \{x':\mBbbZ{}|
((n' = n) \mwedge{} (x' = n))
\mvee{} (((n \mleq{} x') \mwedge{} f x' = ff) \mwedge{} ((n' = (n + 1)) \mvee{} ((n + 1) \mleq{} x')))\}
7. find-xover(f;n;n;1) = v
\mvdash{} let b,a = v
in if b=a + 1 then a else exact-xover(f;a) \mmember{} \{x:\mBbbZ{}| (n \mleq{} x) \mwedge{} f x = ff \mwedge{} f (x + 1) = tt\}
By
Latex:
(D -2 THEN Reduce 0 THEN DSetVars)
Home
Index