Nuprl Lemma : exact-xover_wf

[n:ℤ]. ∀[f:{n...} ⟶ 𝔹].
  exact-xover(f;n) ∈ {x:ℤ(n ≤ x) ∧ ff ∧ (x 1) tt}  
  supposing (∃m:{n...}. ((∀k:{n..m-}. ff) ∧ (∀k:{m...}. tt))) ∧ ff


Proof




Definitions occuring in Statement :  exact-xover: exact-xover(f;n) int_upper: {i...} int_seg: {i..j-} bfalse: ff btrue: tt bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q exists: x:A. B[x] all: x:A. B[x] nat: int_upper: {i...} decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A top: Top prop: cand: c∧ B int_seg: {i..j-} lelt: i ≤ j < k so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] guard: {T} ge: i ≥  le: A ≤ B less_than': less_than'(a;b) exact-xover: exact-xover(f;n) less_than: a < b nat_plus: + squash: T true: True bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b nequal: a ≠ b ∈  label: ...$L... t iff: ⇐⇒ Q rev_implies:  Q sq_stable: SqStable(P)
Lemmas referenced :  subtract_wf int_upper_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermSubtract_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf le_wf decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf all_wf int_seg_wf equal-wf-T-base subtype_rel_sets int_upper_wf bool_wf int_upper_subtype_int_upper int_seg_properties exists_wf nat_properties ge_wf less_than_wf less_than_transitivity1 less_than_irreflexivity decidable__equal_int int_seg_subtype false_wf intformeq_wf int_formula_prop_eq_lemma nat_wf find-xover_wf or_wf equal-wf-base int_subtype_base equal_wf eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int squash_wf true_wf iff_weakening_equal not_wf subtype_rel_dep_function subtype_rel_self sq_stable__and sq_stable__le sq_stable__equal btrue_neq_bfalse intformor_wf int_formula_prop_or_lemma
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction sqequalHypSubstitution productElimination thin hypothesis dependent_functionElimination dependent_set_memberEquality addEquality extract_by_obid isectElimination setElimination rename because_Cache hypothesisEquality natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll productEquality applyEquality setEquality lambdaFormation baseClosed functionExtensionality applyLambdaEquality equalityTransitivity equalitySymmetry axiomEquality functionEquality intWeakElimination independent_functionElimination hypothesis_subsumption imageMemberEquality baseApply closedConclusion equalityElimination int_eqReduceTrueSq promote_hyp instantiate cumulativity int_eqReduceFalseSq imageElimination universeEquality equalityUniverse levelHypothesis independent_pairEquality

Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[f:\{n...\}  {}\mrightarrow{}  \mBbbB{}].
    exact-xover(f;n)  \mmember{}  \{x:\mBbbZ{}|  (n  \mleq{}  x)  \mwedge{}  f  x  =  ff  \mwedge{}  f  (x  +  1)  =  tt\}   
    supposing  (\mexists{}m:\{n...\}.  ((\mforall{}k:\{n..m\msupminus{}\}.  f  k  =  ff)  \mwedge{}  (\mforall{}k:\{m...\}.  f  k  =  tt)))  \mwedge{}  f  n  =  ff



Date html generated: 2017_04_14-AM-09_18_02
Last ObjectModification: 2017_02_27-PM-03_55_16

Theory : int_2


Home Index