Nuprl Lemma : exact-xover_wf
∀[n:ℤ]. ∀[f:{n...} ⟶ 𝔹].
  exact-xover(f;n) ∈ {x:ℤ| (n ≤ x) ∧ f x = ff ∧ f (x + 1) = tt}  
  supposing (∃m:{n...}. ((∀k:{n..m-}. f k = ff) ∧ (∀k:{m...}. f k = tt))) ∧ f n = ff
Proof
Definitions occuring in Statement : 
exact-xover: exact-xover(f;n)
, 
int_upper: {i...}
, 
int_seg: {i..j-}
, 
bfalse: ff
, 
btrue: tt
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
int_upper: {i...}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
cand: A c∧ B
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
guard: {T}
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
exact-xover: exact-xover(f;n)
, 
less_than: a < b
, 
nat_plus: ℕ+
, 
squash: ↓T
, 
true: True
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
label: ...$L... t
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_stable: SqStable(P)
Lemmas referenced : 
subtract_wf, 
int_upper_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermSubtract_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
lelt_wf, 
all_wf, 
int_seg_wf, 
equal-wf-T-base, 
subtype_rel_sets, 
int_upper_wf, 
bool_wf, 
int_upper_subtype_int_upper, 
int_seg_properties, 
exists_wf, 
nat_properties, 
ge_wf, 
less_than_wf, 
less_than_transitivity1, 
less_than_irreflexivity, 
decidable__equal_int, 
int_seg_subtype, 
false_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
nat_wf, 
find-xover_wf, 
or_wf, 
equal-wf-base, 
int_subtype_base, 
equal_wf, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
not_wf, 
subtype_rel_dep_function, 
subtype_rel_self, 
sq_stable__and, 
sq_stable__le, 
sq_stable__equal, 
btrue_neq_bfalse, 
intformor_wf, 
int_formula_prop_or_lemma
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
dependent_functionElimination, 
dependent_set_memberEquality, 
addEquality, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
because_Cache, 
hypothesisEquality, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
productEquality, 
applyEquality, 
setEquality, 
lambdaFormation, 
baseClosed, 
functionExtensionality, 
applyLambdaEquality, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
functionEquality, 
intWeakElimination, 
independent_functionElimination, 
hypothesis_subsumption, 
imageMemberEquality, 
baseApply, 
closedConclusion, 
equalityElimination, 
int_eqReduceTrueSq, 
promote_hyp, 
instantiate, 
cumulativity, 
int_eqReduceFalseSq, 
imageElimination, 
universeEquality, 
equalityUniverse, 
levelHypothesis, 
independent_pairEquality
Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[f:\{n...\}  {}\mrightarrow{}  \mBbbB{}].
    exact-xover(f;n)  \mmember{}  \{x:\mBbbZ{}|  (n  \mleq{}  x)  \mwedge{}  f  x  =  ff  \mwedge{}  f  (x  +  1)  =  tt\}   
    supposing  (\mexists{}m:\{n...\}.  ((\mforall{}k:\{n..m\msupminus{}\}.  f  k  =  ff)  \mwedge{}  (\mforall{}k:\{m...\}.  f  k  =  tt)))  \mwedge{}  f  n  =  ff
Date html generated:
2017_04_14-AM-09_18_02
Last ObjectModification:
2017_02_27-PM-03_55_16
Theory : int_2
Home
Index