Nuprl Lemma : int_mag_well_founded
WellFnd{i}(ℤ;x,y.|x| < |y|)
Proof
Definitions occuring in Statement :
absval: |i|
,
wellfounded: WellFnd{i}(A;x,y.R[x; y])
,
less_than: a < b
,
int: ℤ
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: λ2x y.t[x; y]
,
nat: ℕ
,
so_apply: x[s1;s2]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
Lemmas referenced :
inv_image_ind,
nat_wf,
less_than_wf,
absval_wf,
istype-int,
nat_well_founded
Rules used in proof :
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isectElimination,
thin,
hypothesis,
sqequalRule,
Error :lambdaEquality_alt,
setElimination,
rename,
because_Cache,
Error :inhabitedIsType,
hypothesisEquality,
Error :universeIsType,
intEquality,
dependent_functionElimination,
independent_functionElimination
Latex:
WellFnd\{i\}(\mBbbZ{};x,y.|x| < |y|)
Date html generated:
2019_06_20-PM-01_15_16
Last ObjectModification:
2018_10_03-PM-10_11_29
Theory : int_2
Home
Index