Nuprl Lemma : int_mag_well_founded

WellFnd{i}(ℤ;x,y.|x| < |y|)


Proof




Definitions occuring in Statement :  absval: |i| wellfounded: WellFnd{i}(A;x,y.R[x; y]) less_than: a < b int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2y.t[x; y] nat: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q
Lemmas referenced :  inv_image_ind nat_wf less_than_wf absval_wf istype-int nat_well_founded
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule Error :lambdaEquality_alt,  setElimination rename because_Cache Error :inhabitedIsType,  hypothesisEquality Error :universeIsType,  intEquality dependent_functionElimination independent_functionElimination

Latex:
WellFnd\{i\}(\mBbbZ{};x,y.|x|  <  |y|)



Date html generated: 2019_06_20-PM-01_15_16
Last ObjectModification: 2018_10_03-PM-10_11_29

Theory : int_2


Home Index