Nuprl Lemma : int_mag_well_founded
WellFnd{i}(ℤ;x,y.|x| < |y|)
Proof
Definitions occuring in Statement : 
absval: |i|
, 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
, 
less_than: a < b
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
nat: ℕ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Lemmas referenced : 
inv_image_ind, 
nat_wf, 
less_than_wf, 
absval_wf, 
istype-int, 
nat_well_founded
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
Error :lambdaEquality_alt, 
setElimination, 
rename, 
because_Cache, 
Error :inhabitedIsType, 
hypothesisEquality, 
Error :universeIsType, 
intEquality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
WellFnd\{i\}(\mBbbZ{};x,y.|x|  <  |y|)
Date html generated:
2019_06_20-PM-01_15_16
Last ObjectModification:
2018_10_03-PM-10_11_29
Theory : int_2
Home
Index