Step
*
of Lemma
mu-bound-property+
∀[b:ℕ]. ∀[f:ℕb ⟶ 𝔹]. {(mu(f) ∈ ℕb) ∧ (↑(f mu(f))) ∧ (∀[i:ℕb]. ¬↑(f i) supposing i < mu(f))} supposing ∃n:ℕb. (↑(f n))
BY
{ (BasicUniformUnivCD Auto THEN (InstLemma `mu-bound-property` [⌜b⌝; ⌜f⌝])⋅ THEN Auto THEN D 0) }
1
1. [b] : ℕ
2. [f] : ℕb ⟶ 𝔹
3. [%] : ∃n:ℕb. (↑(f n))
4. ↑(f mu(f))
5. ∀[i:ℕb]. ¬↑(f i) supposing i < mu(f)
⊢ mu(f) ∈ ℕb
2
1. [b] : ℕ
2. [f] : ℕb ⟶ 𝔹
3. [%] : ∃n:ℕb. (↑(f n))
4. ↑(f mu(f))
5. ∀[i:ℕb]. ¬↑(f i) supposing i < mu(f)
⊢ (↑(f mu(f))) ∧ (∀[i:ℕb]. ¬↑(f i) supposing i < mu(f))
Latex:
Latex:
\mforall{}[b:\mBbbN{}]. \mforall{}[f:\mBbbN{}b {}\mrightarrow{} \mBbbB{}].
\{(mu(f) \mmember{} \mBbbN{}b) \mwedge{} (\muparrow{}(f mu(f))) \mwedge{} (\mforall{}[i:\mBbbN{}b]. \mneg{}\muparrow{}(f i) supposing i < mu(f))\} supposing \mexists{}n:\mBbbN{}b. (\muparrow{}(f n))
By
Latex:
(BasicUniformUnivCD Auto THEN (InstLemma `mu-bound-property` [\mkleeneopen{}b\mkleeneclose{}; \mkleeneopen{}f\mkleeneclose{}])\mcdot{} THEN Auto THEN D 0)
Home
Index