Nuprl Lemma : mu-bound-property+

[b:ℕ]. ∀[f:ℕb ⟶ 𝔹].  {(mu(f) ∈ ℕb) ∧ (↑(f mu(f))) ∧ (∀[i:ℕb]. ¬↑(f i) supposing i < mu(f))} supposing ∃n:ℕb. (↑(f n))


Proof




Definitions occuring in Statement :  mu: mu(f) int_seg: {i..j-} nat: assert: b bool: 𝔹 less_than: a < b uimplies: supposing a uall: [x:A]. B[x] guard: {T} exists: x:A. B[x] not: ¬A and: P ∧ Q member: t ∈ T apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T guard: {T} and: P ∧ Q prop: nat: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  mu-bound-property exists_wf int_seg_wf assert_wf bool_wf nat_wf mu-bound
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis productElimination independent_pairFormation natural_numberEquality setElimination rename sqequalRule lambdaEquality applyEquality functionEquality

Latex:
\mforall{}[b:\mBbbN{}].  \mforall{}[f:\mBbbN{}b  {}\mrightarrow{}  \mBbbB{}].
    \{(mu(f)  \mmember{}  \mBbbN{}b)  \mwedge{}  (\muparrow{}(f  mu(f)))  \mwedge{}  (\mforall{}[i:\mBbbN{}b].  \mneg{}\muparrow{}(f  i)  supposing  i  <  mu(f))\}  supposing  \mexists{}n:\mBbbN{}b.  (\muparrow{}(f  n))



Date html generated: 2016_05_14-AM-07_30_00
Last ObjectModification: 2015_12_26-PM-01_26_13

Theory : int_2


Home Index