Step
*
1
of Lemma
mu-ge_wf2
.....assertion.....
1. n : ℤ
2. f : {n...} ⟶ (Top + Top)
3. m : {n...}
4. ↑isl(f m)
⊢ ∀d:ℕ. ((n ≤ (m - d))
⇒ (mu-ge(f;m - d) ∈ {n...}))
BY
{ (RepUR ``mu-ge ifthenelse`` 0
THEN InductionOnNat
THEN (D 0 THENA Auto)
THEN RW (SweepUpC UnrollRecursionC) 0
THEN Reduce 0) }
1
1. n : ℤ
2. f : {n...} ⟶ (Top + Top)
3. m : {n...}
4. ↑isl(f m)
5. d : ℤ
6. n ≤ (m - 0)
⊢ case f (m - 0)
of inl() =>
m - 0
| inr() =>
eval m = (m - 0) + 1 in
fix((λmu-ge,n. case f n of inl() => n | inr() => eval m = n + 1 in mu-ge m)) m ∈ {n...}
2
1. n : ℤ
2. f : {n...} ⟶ (Top + Top)
3. m : {n...}
4. ↑isl(f m)
5. d : ℤ
6. 0 < d
7. (n ≤ (m - d - 1))
⇒ (fix((λmu-ge,n. case f n of inl() => n | inr() => eval m = n + 1 in mu-ge m)) (m - d - 1) ∈ {n..\000C.})
8. n ≤ (m - d)
⊢ case f (m - d)
of inl() =>
m - d
| inr() =>
eval m = (m - d) + 1 in
fix((λmu-ge,n. case f n of inl() => n | inr() => eval m = n + 1 in mu-ge m)) m ∈ {n...}
Latex:
Latex:
.....assertion.....
1. n : \mBbbZ{}
2. f : \{n...\} {}\mrightarrow{} (Top + Top)
3. m : \{n...\}
4. \muparrow{}isl(f m)
\mvdash{} \mforall{}d:\mBbbN{}. ((n \mleq{} (m - d)) {}\mRightarrow{} (mu-ge(f;m - d) \mmember{} \{n...\}))
By
Latex:
(RepUR ``mu-ge ifthenelse`` 0
THEN InductionOnNat
THEN (D 0 THENA Auto)
THEN RW (SweepUpC UnrollRecursionC) 0
THEN Reduce 0)
Home
Index