Step
*
1
1
of Lemma
omega-dark-shadow
1. a : ℕ+
2. b : ℕ+
3. c : ℤ
4. d : ℤ
5. ((a - 1) * (b - 1)) ≤ ((a * d) - b * c)
6. 0 ≤ ((a - 1) * (b - 1))
7. (b * c) ≤ (a * d)
⊢ ∃x:ℤ. (((b * c) ≤ ((a * b) * x)) ∧ (((a * b) * x) ≤ (a * d)))
BY
{ Assert ⌜∃j:ℤ. ((a * b) * j < b * c ∧ ((b * c) ≤ ((a * b) * (j + 1))))⌝⋅ }
1
.....assertion.....
1. a : ℕ+
2. b : ℕ+
3. c : ℤ
4. d : ℤ
5. ((a - 1) * (b - 1)) ≤ ((a * d) - b * c)
6. 0 ≤ ((a - 1) * (b - 1))
7. (b * c) ≤ (a * d)
⊢ ∃j:ℤ. ((a * b) * j < b * c ∧ ((b * c) ≤ ((a * b) * (j + 1))))
2
1. a : ℕ+
2. b : ℕ+
3. c : ℤ
4. d : ℤ
5. ((a - 1) * (b - 1)) ≤ ((a * d) - b * c)
6. 0 ≤ ((a - 1) * (b - 1))
7. (b * c) ≤ (a * d)
8. ∃j:ℤ. ((a * b) * j < b * c ∧ ((b * c) ≤ ((a * b) * (j + 1))))
⊢ ∃x:ℤ. (((b * c) ≤ ((a * b) * x)) ∧ (((a * b) * x) ≤ (a * d)))
Latex:
Latex:
1. a : \mBbbN{}\msupplus{}
2. b : \mBbbN{}\msupplus{}
3. c : \mBbbZ{}
4. d : \mBbbZ{}
5. ((a - 1) * (b - 1)) \mleq{} ((a * d) - b * c)
6. 0 \mleq{} ((a - 1) * (b - 1))
7. (b * c) \mleq{} (a * d)
\mvdash{} \mexists{}x:\mBbbZ{}. (((b * c) \mleq{} ((a * b) * x)) \mwedge{} (((a * b) * x) \mleq{} (a * d)))
By
Latex:
Assert \mkleeneopen{}\mexists{}j:\mBbbZ{}. ((a * b) * j < b * c \mwedge{} ((b * c) \mleq{} ((a * b) * (j + 1))))\mkleeneclose{}\mcdot{}
Home
Index