Nuprl Lemma : omega-dark-shadow

a,b:ℕ+. ∀c,d:ℤ.  ((((a 1) (b 1)) ≤ ((a d) c))  (∃x:ℤ((c ≤ (a x)) ∧ ((b x) ≤ d))))


Proof




Definitions occuring in Statement :  nat_plus: + le: A ≤ B all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q multiply: m subtract: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] nat_plus: + nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q subtype_rel: A ⊆B int_nzero: -o so_lambda: λ2x.t[x] so_apply: x[s] nequal: a ≠ b ∈  guard: {T} le: A ≤ B cand: c∧ B uiff: uiff(P;Q) less_than: a < b squash: T int_lower: {...i} gt: i > j ge: i ≥ 
Lemmas referenced :  le_wf subtract_wf nat_plus_wf mul_bounds_1a nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf itermMultiply_wf int_term_value_mul_lemma mul_nat_plus equal_wf div_rem_sum subtype_rel_sets less_than_wf nequal_wf intformeq_wf int_formula_prop_eq_lemma equal-wf-base int_subtype_base rem_bounds_1 decidable__equal_int decidable__lt add-is-int-iff multiply-is-int-iff itermAdd_wf int_term_value_add_lemma false_wf rem_bounds_2 itermMinus_wf int_term_value_minus_lemma not_wf mul_preserves_le nat_plus_subtype_nat mul_cancel_in_le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin multiplyEquality setElimination rename hypothesisEquality hypothesis natural_numberEquality because_Cache intEquality dependent_set_memberEquality dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll equalityTransitivity equalitySymmetry independent_functionElimination applyEquality setEquality applyLambdaEquality baseClosed productElimination divideEquality pointwiseFunctionality promote_hyp baseApply closedConclusion addEquality productEquality imageElimination

Latex:
\mforall{}a,b:\mBbbN{}\msupplus{}.  \mforall{}c,d:\mBbbZ{}.
    ((((a  -  1)  *  (b  -  1))  \mleq{}  ((a  *  d)  -  b  *  c))  {}\mRightarrow{}  (\mexists{}x:\mBbbZ{}.  ((c  \mleq{}  (a  *  x))  \mwedge{}  ((b  *  x)  \mleq{}  d))))



Date html generated: 2017_04_14-AM-09_15_25
Last ObjectModification: 2017_02_27-PM-03_53_46

Theory : int_2


Home Index