Step
*
2
1
2
1
1
of Lemma
sum-has-value
1. f : Base
2. d : ℤ
3. 0 < d
4. ∀n,m:ℕ. (((n - m) ≤ (d - 1))
⇒ (∀v:ℤ. ((sum_aux(n;v;m;x.f[x]))↓
⇒ (f ∈ {m..n-} ⟶ ℤ))))
5. n : ℕ@i
6. m : ℕ@i
7. (n - m) ≤ d
8. v : ℤ@i
9. (if (m) < (n) then eval v' = f[m] + v in eval i' = m + 1 in sum_aux(n;v';i';x.f[x]) else v)↓
10. m ∈ ℤ
11. n ∈ ℤ
12. i : {m..n-}
⊢ f i ∈ ℤ
BY
{ TACTIC:(Assert m < n BY
Auto) }
1
1. f : Base
2. d : ℤ
3. 0 < d
4. ∀n,m:ℕ. (((n - m) ≤ (d - 1))
⇒ (∀v:ℤ. ((sum_aux(n;v;m;x.f[x]))↓
⇒ (f ∈ {m..n-} ⟶ ℤ))))
5. n : ℕ@i
6. m : ℕ@i
7. (n - m) ≤ d
8. v : ℤ@i
9. (if (m) < (n) then eval v' = f[m] + v in eval i' = m + 1 in sum_aux(n;v';i';x.f[x]) else v)↓
10. m ∈ ℤ
11. n ∈ ℤ
12. i : {m..n-}
13. m < n
⊢ f i ∈ ℤ
Latex:
Latex:
1. f : Base
2. d : \mBbbZ{}
3. 0 < d
4. \mforall{}n,m:\mBbbN{}. (((n - m) \mleq{} (d - 1)) {}\mRightarrow{} (\mforall{}v:\mBbbZ{}. ((sum\_aux(n;v;m;x.f[x]))\mdownarrow{} {}\mRightarrow{} (f \mmember{} \{m..n\msupminus{}\} {}\mrightarrow{} \mBbbZ{}))))
5. n : \mBbbN{}@i
6. m : \mBbbN{}@i
7. (n - m) \mleq{} d
8. v : \mBbbZ{}@i
9. (if (m) < (n) then eval v' = f[m] + v in eval i' = m + 1 in sum\_aux(n;v';i';x.f[x]) else v)\mdownarrow{}
10. m \mmember{} \mBbbZ{}
11. n \mmember{} \mBbbZ{}
12. i : \{m..n\msupminus{}\}
\mvdash{} f i \mmember{} \mBbbZ{}
By
Latex:
TACTIC:(Assert m < n BY
Auto)
Home
Index