Nuprl Lemma : co-nil_wf
∀[T:Type]. (() ∈ colist(T))
Proof
Definitions occuring in Statement :
co-nil: ()
,
colist: colist(T)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
co-nil: ()
,
subtype_rel: A ⊆r B
Lemmas referenced :
it_wf,
unit_subtype_colist,
istype-universe
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
Error :isect_memberFormation_alt,
introduction,
cut,
sqequalRule,
extract_by_obid,
hypothesis,
applyEquality,
thin,
sqequalHypSubstitution,
isectElimination,
hypothesisEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
instantiate,
universeEquality
Latex:
\mforall{}[T:Type]. (() \mmember{} colist(T))
Date html generated:
2019_06_20-PM-00_38_09
Last ObjectModification:
2018_12_04-PM-00_12_21
Theory : list_0
Home
Index