Nuprl Lemma : comb_for_segment_wf

λT,as,m,n,z. (as[m..n-]) ∈ T:Type ⟶ as:(T List) ⟶ m:ℤ ⟶ n:ℤ ⟶ (↓True) ⟶ (T List)


Proof




Definitions occuring in Statement :  segment: as[m..n-] list: List squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] int: universe: Type
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop:
Lemmas referenced :  segment_wf squash_wf true_wf istype-int list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaEquality_alt,  sqequalHypSubstitution imageElimination cut introduction extract_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry Error :universeIsType,  Error :inhabitedIsType,  universeEquality

Latex:
\mlambda{}T,as,m,n,z.  (as[m..n\msupminus{}])  \mmember{}  T:Type  {}\mrightarrow{}  as:(T  List)  {}\mrightarrow{}  m:\mBbbZ{}  {}\mrightarrow{}  n:\mBbbZ{}  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  (T  List)



Date html generated: 2019_06_20-PM-00_43_21
Last ObjectModification: 2018_10_01-PM-00_28_10

Theory : list_0


Home Index