Nuprl Lemma : isaxiom-wf-colist
∀[T:Type]. ∀[x:colist(T)].  (isaxiom(x) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
colist: colist(T), 
bfalse: ff, 
btrue: tt, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
isaxiom: if z = Ax then a otherwise b, 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
ext-eq: A ≡ B, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
b-union: A ⋃ B, 
tunion: ⋃x:A.B[x], 
bool: 𝔹, 
unit: Unit, 
ifthenelse: if b then t else f fi , 
pi2: snd(t)
Lemmas referenced : 
colist-ext, 
colist_wf, 
btrue_wf, 
bfalse_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
introduction, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
hypothesis_subsumption, 
applyEquality, 
imageElimination, 
unionElimination, 
equalityElimination
Latex:
\mforall{}[T:Type].  \mforall{}[x:colist(T)].    (isaxiom(x)  \mmember{}  \mBbbB{})
Date html generated:
2016_05_14-AM-06_25_25
Last ObjectModification:
2015_12_26-PM-00_42_30
Theory : list_0
Home
Index