Nuprl Lemma : list_accum_cons

[A,B,y,f:Top].
  (accumulate (with value and list item a):
    f[x;a]
   over list:
     [A B]
   with starting value:
    y) accumulate (with value and list item a):
          f[x;a]
         over list:
           B
         with starting value:
          f[y;A]))


Proof




Definitions occuring in Statement :  list_accum: list_accum cons: [a b] uall: [x:A]. B[x] top: Top so_apply: x[s1;s2] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uall: [x:A]. B[x]
Lemmas referenced :  list_accum_cons_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution sqequalTransitivity computationStep dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation introduction sqequalAxiom isectElimination hypothesisEquality because_Cache

Latex:
\mforall{}[A,B,y,f:Top].
    (accumulate  (with  value  x  and  list  item  a):
        f[x;a]
      over  list:
          [A  /  B]
      with  starting  value:
        y)  \msim{}  accumulate  (with  value  x  and  list  item  a):
                    f[x;a]
                  over  list:
                      B
                  with  starting  value:
                    f[y;A]))



Date html generated: 2016_05_14-AM-06_29_15
Last ObjectModification: 2015_12_26-PM-00_40_24

Theory : list_0


Home Index