Nuprl Lemma : map-axiom

[f:Top]. (map(f;Ax) Ax)


Proof




Definitions occuring in Statement :  map: map(f;as) uall: [x:A]. B[x] top: Top sqequal: t axiom: Ax
Definitions unfolded in proof :  it: nil: [] all: x:A. B[x] member: t ∈ T top: Top uall: [x:A]. B[x]
Lemmas referenced :  map_nil_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation introduction sqequalAxiom

Latex:
\mforall{}[f:Top].  (map(f;Ax)  \msim{}  Ax)



Date html generated: 2016_05_14-AM-06_29_23
Last ObjectModification: 2015_12_26-PM-00_40_12

Theory : list_0


Home Index