Step * 2 1 1 1 1 1 of Lemma merge-int-comm


1. Type
2. T ⊆r ℤ
3. T
4. u1 T
5. List
6. ∀[bs:T List]. merge-int([u1 v];bs) merge-int(bs;[u1 v]) ∈ (T List) supposing sorted([u1 v]) ∧ sorted(bs)
7. sorted([u1 v]) ∧ (∀z∈[u1 v].u ≤ z)
8. sorted([u1 v])
9. u1 < u
⊢ [u; [u1 v]] [u1 insert-int(u;v)] ∈ (T List)
BY
(D -3 THEN -3 With ⌜0⌝  THEN All Reduce THEN Auto) }


Latex:


Latex:

1.  T  :  Type
2.  T  \msubseteq{}r  \mBbbZ{}
3.  u  :  T
4.  u1  :  T
5.  v  :  T  List
6.  \mforall{}[bs:T  List]
          merge-int([u1  /  v];bs)  =  merge-int(bs;[u1  /  v])  supposing  sorted([u1  /  v])  \mwedge{}  sorted(bs)
7.  sorted([u1  /  v])  \mwedge{}  (\mforall{}z\mmember{}[u1  /  v].u  \mleq{}  z)
8.  sorted([u1  /  v])
9.  u1  <  u
\mvdash{}  [u;  [u1  /  v]]  =  [u1  /  insert-int(u;v)]


By


Latex:
(D  -3  THEN  D  -3  With  \mkleeneopen{}0\mkleeneclose{}    THEN  All  Reduce  THEN  Auto)




Home Index