Step
*
1
of Lemma
append_split2
1. [T] : Type
2. L : T List
3. [P] : ℕ||L|| ⟶ ℙ
4. ∀x:ℕ||L||. Dec(P x)
5. ∀i,j:ℕ||L||. ((P i)
⇒ P j supposing i < j)
6. ∃i:ℕ||L||. ((P i) ∧ (∀j:ℕi. (¬(P j))))
⊢ ∃L_1,L_2:T List. ((L = (L_1 @ L_2) ∈ (T List)) ∧ (∀i:ℕ||L||. (P i
⇐⇒ ||L_1|| ≤ i)))
BY
{ ExRepD }
1
1. [T] : Type
2. L : T List
3. [P] : ℕ||L|| ⟶ ℙ
4. ∀x:ℕ||L||. Dec(P x)
5. ∀i,j:ℕ||L||. ((P i)
⇒ P j supposing i < j)
6. i : ℕ||L||
7. P i
8. ∀j:ℕi. (¬(P j))
⊢ ∃L_1,L_2:T List. ((L = (L_1 @ L_2) ∈ (T List)) ∧ (∀i:ℕ||L||. (P i
⇐⇒ ||L_1|| ≤ i)))
Latex:
Latex:
1. [T] : Type
2. L : T List
3. [P] : \mBbbN{}||L|| {}\mrightarrow{} \mBbbP{}
4. \mforall{}x:\mBbbN{}||L||. Dec(P x)
5. \mforall{}i,j:\mBbbN{}||L||. ((P i) {}\mRightarrow{} P j supposing i < j)
6. \mexists{}i:\mBbbN{}||L||. ((P i) \mwedge{} (\mforall{}j:\mBbbN{}i. (\mneg{}(P j))))
\mvdash{} \mexists{}L$_{1}$,L$_{2}$:T List. ((L = (L$_{1}\mbackslash{}ff2\000C4 @ L$_{2}$)) \mwedge{} (\mforall{}i:\mBbbN{}||L||. (P i \mLeftarrow{}{}\mRightarrow{} ||L$_{1}$|| \mleq{} i)))
By
Latex:
ExRepD
Home
Index